
Roadway lighting pattern is a significant factor that influences nighttime safety.
Since the illumination distribution along roadway corridors presents an intricate
pattern, the traditional photometric measure, such as average horizontal
illuminance and ratio-based uniformity, cannot capture the patterns that truly
contribute to the injury severity of a nighttime crash on roadway corridors. This
study aimed to develop a machine learning model for accurately predicting the
crash injury severity based on horizontal illuminance patterns and other features,
such as geometric, traffic control, and environmental factors.

A Machine Learning-based Study of Lighting Patterns 
Contributing to Nighttime Crash Severity on Roadway Corridors

Lighting data:
“Big” Lighting data were collected using 
the Advanced Lighting Measurement 
System (ALMS) :
• Horizontal illuminance (foot-candles)
• Two measurement points every 10ft 

per lane
• Completed 400 center-miles 

measurement in Florida
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Example of Illuminance Patterns Influencing Drivers’ Vision

Crash data:
2,129 nighttime crashes were collected 
and matched to measured lighting data 
for 2011-2014:
• Create an upstream buffer of 1200 ft. 

for each crash 
• Divide the buffer into 20 sub-zones
• Calculate lighting statistic for each sub-

zone to describe lighting patterns 
associating with each crash
• Mean & Standard Deviation

Roadway Corridors with Street Lighting Measurement

(a) Lighting pattern associated with a non-severe injury crash

(b) Lighting pattern associated with a severe injury crash

Lighting Buffers and Sub-zones Associated with 
Nighttime Crashes 

• 80% samples
• SVM kernel parameter (g), and SVM regularization parameter (c):

Feature Selection: 
• Non-lighting features that significantly contribute to crash injury

Model Training with Grid Search: 

Identified Non-lighting Features with Probit Model 

Testing Result

• The developed SVM model can effectively predict crash injury severity
with limited features
• Crash data absent during-crash many features that directly

contribute to injury severity
• Re-sampling and voting prediction are beneficial to improve prediction

performance for small and unbalanced crash data
• Lighting statistics (mean and SD) of 20 sub-zones (30 feet zone length)

have limitations:
• Correlated to other non-lighting features
• Still to rough to depict lighting patterns

(accuracy) Trained SVM Models
Experiment Lighting statistics only Lighting + Non-lighting Features

1 66.66 74.4
2 66.66 69
3 66.92 69.5
4 66.66 74.7
5 66.66 73.1
6 66.66 72.6
7 66.66 74.7
8 66.66 70.8
9 66.66 73.6

10 66.66 75
Average 66.686 72.74

• Each experiment represents an SVM model with random training samples
• Re-sampling on small dataset

• Multiple experiments provide more convincing prediction results

Identify significant 
non-lighting  features 

with Probit model
Re-sampling

SVM Training with 
Parameter Grid 

Search

“Best” Model 
with highest F1 

Score 
SVM TestingFinal Model

Feature Codes Coef. Z-test
SEVERITY 1 - severe injury (fatal or incapacitating injury) 0 –

others  
HFC MEAN Average horizontal illuminance (fc) of sub-zones
HFC SD Average horizontal (fc) standard deviation of sub-zones
MULTIPLE LANE 1 - number of lanes > 4, 0 – others -2.18329 -12.45
HIGH SPEEDDLMT 1 - speed limit >= 40 mph , 0 - others 0.18082 2.18
TWLTL 1 - Two-way-left-turn-lane median, 0 - others 0.40805 2.93
WEEKEND 1 – weekend,  0 - weekdays 0.32431 1.86
ALCHOL/DRUG 1 - alcohol or drug involved, 0 – none -0.20208 -2.3
AGGRESSIVE 1 - aggressive driving involved, 0 – none 0.38913 4.07
TEEN-DRIVER 1 - teenage driver involved,  0 - none 0.54863 1.95
NO SAFETY BELT 1 - no belt used by one more person, 0 - belt used 0.25048 1.78
SPEEDING 1 – speeding,  0 - no speeding 0.41887 4
HIT AND RUN 1 - hit and run, 0 - no hit and run 0.41168 1.82
YOUNG-INJURED 1 - the highest-injured person is younger than 20,  0 –

others -0.43402 -3.36
PEDD-BIKE 1 - pedestrian or bicycle involved, 0 - others -0.58025 -4.64
MOTORCYCLE 1 - motorcycle involved, 0 - others 1.71331 11.63
REAREND 1 - rear-end crash, 0 - others 1.15367 9.28
ANGLE 1 - angle crash, 0 - others 0.2325 1.78
HEADON 1 - head on crash, 0 - others 0.5134 3.99
HITFIXED 1 - hit on roadside fixed objects, 0 - others 0.82825 3.38

Re-sampling:
• Crash data are unbalanced (non-severe data is predominant, 648: 1481)
• Avoid under-fitting issues
• Randomly match one severe-injury with two non-severe injury data

Model Selection with Highest F-1 Score:

• Consider both true and false positive/negative
• More realistic  measurement of  models

Item Crash I Crash II
Crash Features True severity Possible Injury Fatal

SVM Model

Buffer length 0.225 miles
Number of sub-zones 20
Predicted probability of 
“1” 

5.6% 73.3%

Predicted severity 0 - Non-severe 1 - Severe

Lighting Statistic 
(whole segment)

Average horizontal 
illuminance (fc)

1.298 0.705

Ave/Min 11.4 43.5
Max/Min 19.5 134.5

Case Study
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