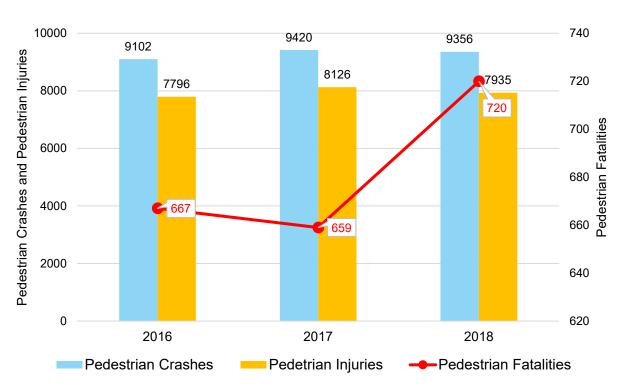
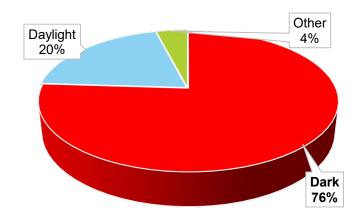
Lighting Strategies to Improve Pedestrian Safety and Walkability



Zhenyu Wang, Ph.D.
Pei-Sung Lin, Ph.D.
CUTR, University of South Florida

Outline


- Pedestrian Nighttime Crash Facts
- Pedestrian Visibility
- Roadway Lighting
- Advanced Lighting Measurement and Analysis
- Applications of Lighting Data in Pedestrian Nighttime Safety Management

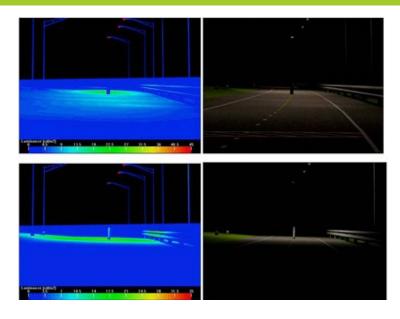
Pedestrian Crash Facts

Source: FLHSMV Traffic Crash Facts, 2018

Pedestrian Fatalities by Lighting Condition, 2018

Percentage of Pedestrian Fatalities in the Dark

Major Contributing Factors to Nighttime Pedestrian Crashes


- Reduced pedestrian visibility
 - Driver's visual functions are degraded under low luminance conditions
 - The ability to detect and recognize objects is reduced
- Relatively high running speed
 - Few traffic at night
 - Long stopping sight distance is needed
- Pedestrian failed to follow Right-of-Way
- Other factors
 - Impaired driving
 - Drowsy driving

Hillsborough Ave, Tampa, FL

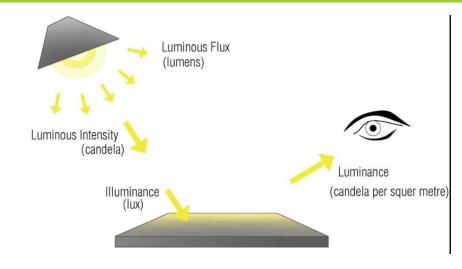
Pedestrian Visibility

- Pedestrian visibility is measured as the distance at which a driver can see a pedestrian to respond appropriately to the pedestrian
- Objects are seen by "contrast"
 - The visible difference between an object and its background
 - Luminance contrast is the primary means by which an object is detected
- Factors influencing illuminance contrast
 - Roadway lighting
 - Head lighting
 - Pedestrian clothing
 - Background

Luminance Contrast

Color Contrast

Roadway Lighting



- Roadway lighting has been recognized as a vital countermeasure to improve pedestrian nighttime safety
 - Increase the visibility of pedestrians
 - Increases sight distance
 - Makes roadside objects more noticeable to the driver
 - Provides clear benefits of personal security for pedestrians during nighttime

Photometric Measures for Street Lighting

- Illuminance
 - The amount of light falling onto a surface, measured 6 inches above ground
 - foot-candles (lumens/ft²) or lux (lumens/m²)
- Vertical Illuminance
 - The amount of light landing on pedestrians, measured at 1.5m (face height)
- Uniformity
 - How evenly illumination is distributed along a road
 - Max-min ratio, Avg-min ratio
 - "Poor" lighting uniformity causes drivers' long adaption and reduce driver vision

https://www.slideshare.net/hrishihrx/luminance-and-illuminance

Source: https://electricalnotes.wordpress.com/2019/06/01/how-to-design-efficient-street-lighting-part-4/

Roadway Lighting Design Standards

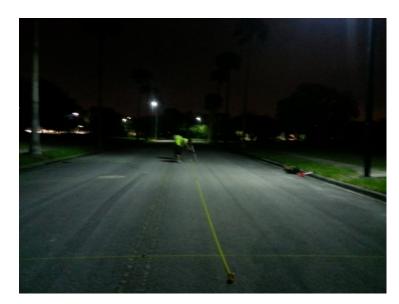
Roadway Classification	Average Illuminance Level (foot-candle)		Illumination Uniformity Ratios		Veiling Luminance Ratio			
	Horizontal	Vertical	Avg./Min.	Max./Min.	$L_{v(max)\!/}L_{avg}$			
Conventional Roadway Lighting								
Freeway	1.5							
Major Arterials	1.5	N/A	≤ 4 :1	≤ 10:1	≤ 0.3:1			
Other	1.0							
High Mast Roadway Lighting								
All Roads	0.8 - 1.0	N/A	≤ 3:1	≤ 10:1	N/A			
Signalized Intersection Lighting								
New Construction	3.0	2.3						
Lighting Datus fit	1.5 (std.)	1.5 (std.)	≤ 4:1	≤ 10:1	N/A			
Lighting Retrofit	1.0 (min.)	1.0 (min.)						
Midblock Crosswalk Lighting								
Low Ambient Luminance		2.3						
Medium & High Ambient	N/A	3.0	N/A	N/A	N/A			
Luminance		5.0						

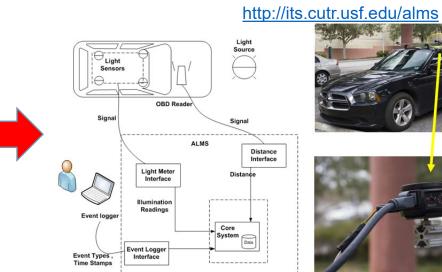
Source: FDOT Design Manual, Table 231.2.1

Lighting Level Monitoring and Maintenance

- Ensuring adequate illumination is critical to improve nighttime safety and security for pedestrians
- Roadway lighting illumination performance may deteriorate over time
- Possible causes
 - Natural bulb degradation and damage
 - Obstacles
 - External lighting resources
- A periodic lighting level checking is necessary

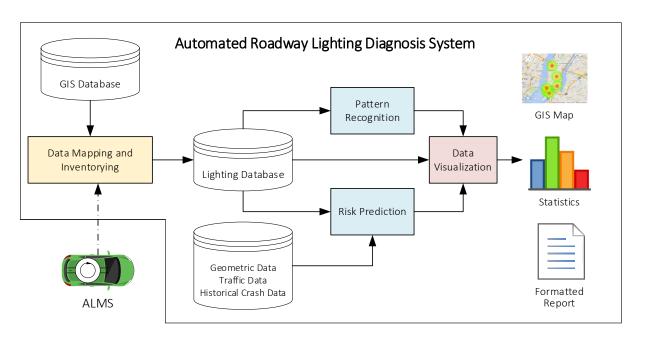
Comparison of lighting upgrade on Wesley Chapple Blvd, Tampa, Florida

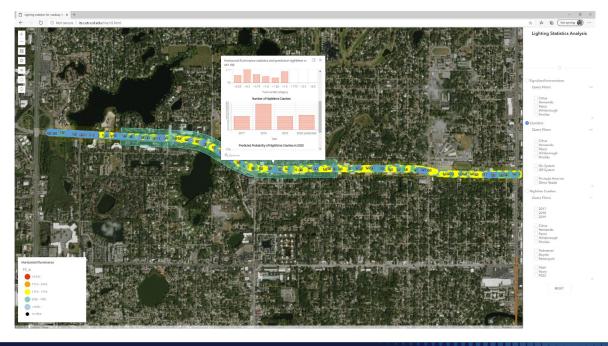



Source: FHWA Lighting Handbook

Advanced Lighting Measurement Technologies

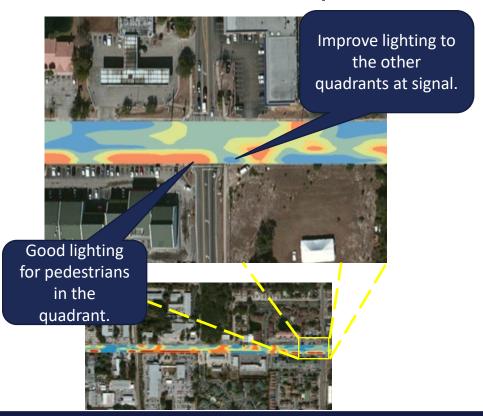
- Traditional "manual" lighting measurement
 - Costly (\$5,000+/mile)
 - Worker safety concerns
 - Driver safety concerns
 - Manpower
 - Accuracy/reliability


- Advanced lighting measurement System (ALMS)
 - Developed by CUTR
 - High-resolution (multiple readings per 10 feet per lane)
 - High efficiency (speed ≤ 80 mph)
 - Low cost (\$300/mi)
 - Proactive Pedestrian Safety Management

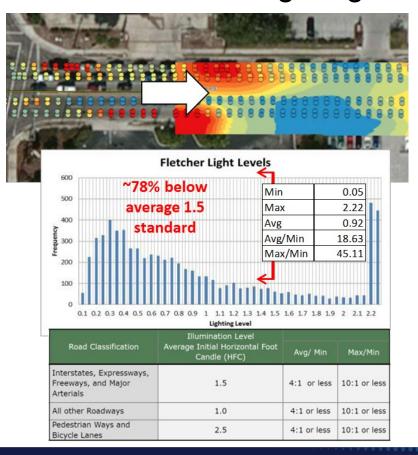


Lighting Data Analysis Tools

- A Web-GIS application to analyze "big" lighting data
- http://its.cutr.usf.edu/lita



Function	Algorithm/Technology	Description
Lighting Pattern Diagnosis	Hierarchical Clustering Model	Distinguish lighting patterns that do not satisfy FDOT standards
Crash Risk Prediction	 Safety Performance Function Empirical Bayesian Model CMF developed by Case-Control Study 	 Predict nighttime crash frequency by lighting, traffic, and geometry conditions Estimate nighttime crash reduction due to lighting pattern improvement
Data Visualization	Web-GIS	Present analysis results on GIS map

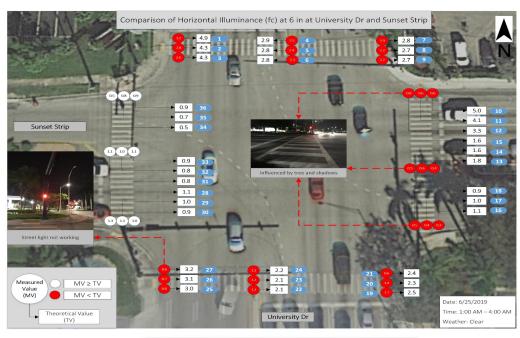


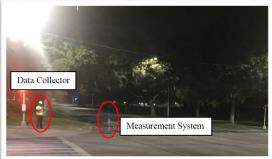
Applications – Lighting Level Assessment

 Lighting level data showed lighting variance at intersection quadrants.

Determine corridor lighting levels

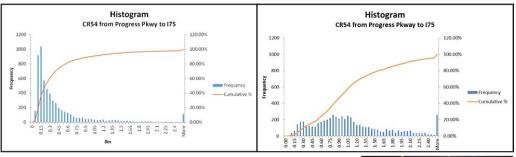
Application – Validating Intersection Lighting Retrofits


 FDOT is conducting lighting retrofit projects at more than 2,000 signalized intersection for pedestrian safety


 New and reconstructed signalized intersections with crosswalks will have vertical illumination

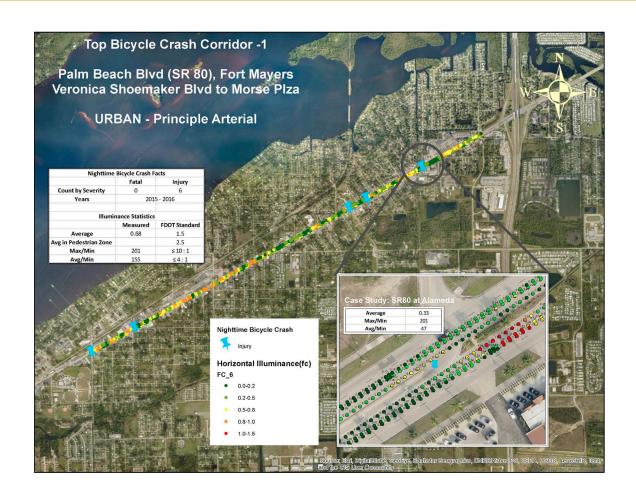
A quality assurance review of intersection lighting

retrofits is crucial.

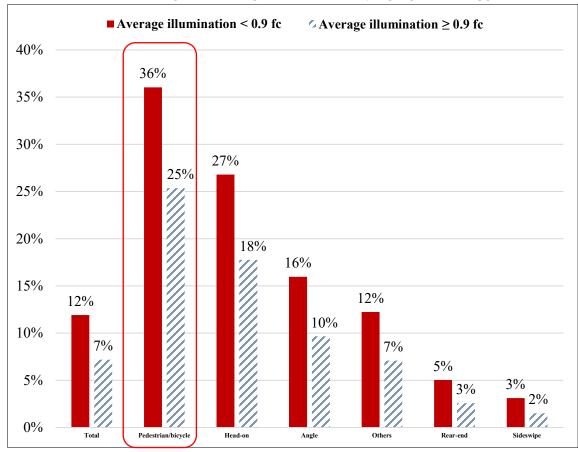


Application – LED and HPS Comparison

Street Lighting Level Measurement (foot candle) on 7th Avenue E

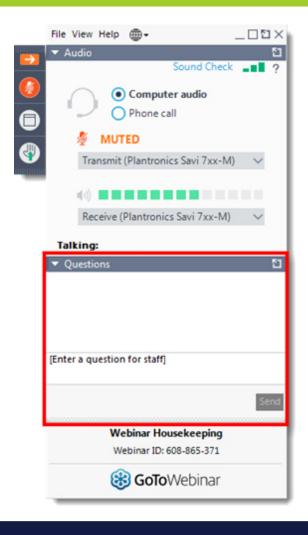


	Wesley Chapel Blvd HPS					
	Min	0.03				
	Max	4.05				
	Avg	0.43				
	Avg/Min	13.29				
	Max/Min	126.69				


Application – Lighting Diagnosis for Pedestrian Crashes

Application – Pedestrian Nighttime Safety Analysis

Probability of Fatality and Severe Injury by Crash Types

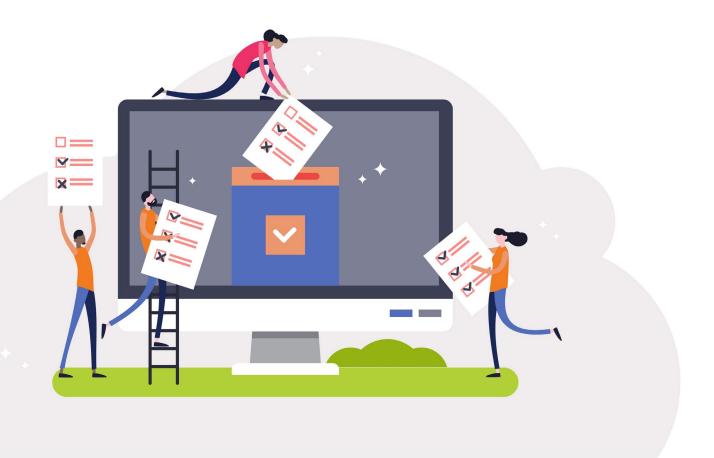


CMF for Vehicle Crashes

CMFs for Lighting Patterns on Corridors from a matched case-control study								
Lighting Statistics	Change	CMF	95% CI for CMF					
Mean of horizontal illuminance	$< 0.5 \text{ fc} \rightarrow (0.5 \text{ fc}, 1.0 \text{ fc})$	0.679	[0.468, 0.984]					
(fc)	$< 0.5 \text{ fc} \rightarrow > 1.0 \text{ fc}$	0.581	[0.367, 0.922]					
Uniformity Max-Min Ratio	> 10 -> < 10	0.719	[0.533, 0.970]					

CMFs for Pedestrian Crashes are in developing

Questions?



Poll Question

Cast your vote on-screen.

If you are in full-screen mode, you may need to press "ESC" to exit full screen mode in order to vote.

THANK YOU

Zhenyu Wang, Ph.D.
Senior Research Associate
CUTR, University of South Florida

Email: zwang9@cutr.usf.edu

Florida LTAP Center
Center for Urban Transportation Research (CUTR)
University of South Florida
4202 E. Fowler Avenue, CUT100
Tampa, FL 33620-5375
FloridaLTAP@cutr.usf.edu
(813) 974-4450
www.FloridaLTAP.org