

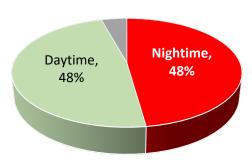
Center for Transportation, Equity, Decisions and Dollars (CTEDD)
19-13

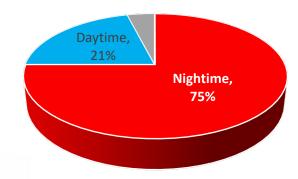
Development of Automated Roadway Lighting Diagnosis Tools for Nighttime Traffic Safety Improvement

Zhenyu Wang, Ph.D., Pei-Sung Lin, Ph.D., Srinivas Katkoori, Ph.D.

Mingchen Li, Abhijit Vasili, Runan Yang

Outline

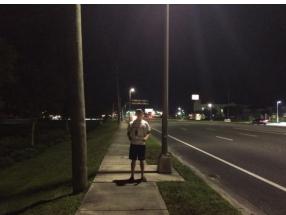

- Background
- Lighting Diagnosis
- Nighttime Safety Evaluation
- Development of Computer Tools
- Case Study
- Next Step


Background

- Nighttime crashes, <u>especially fatalities</u>, are overrepresented on the US roadway
 - Only <u>21-23%</u> of the vehicle miles traveled (VMT) occurred at night
- Primary contributing factors to nighttime safety
 - Reduced visibility in darkness
 - Drowsy and impaired driving
- Roadway lighting has been recognized as a vital countermeasure to prevent nighttime crashes
 - Improves the visibility of the roadway
 - Increases sight distance
 - Makes roadside obstacles more noticeable to the driver
 - Provides clear benefits of personal security for pedestrians, bicyclists, and transit users during nighttime

Pedestrian Fatalities, 2017

Source: NHTSA Traffic Safety Facts



- Ensuring adequate illumination is critical to improve nighttime safety and security for all road users
- Roadway lighting illumination performance may deteriorate over time
 - Reduced lighting level and poor uniformity
 - Does not satisfy DOT standards
- Possible causes
 - Natural bulb degradation and damage
 - Obstacles
 - External lighting resources
- A periodic lighting level checking is necessary

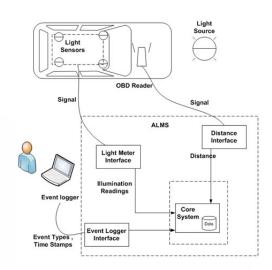
Street Lighting Metrics

- AASHTO Roadway Lighting Design Guide
- Adopted by state DOTs
- A good street lighting design requires
 - High average lighting level
 - Uniform distribution

Roadway Classification	Average Illuminance Level (foot-candle)		Illumination Uniformity Ratios		Veiling Luminance Ratio	
	Horizontal	Vertical	Avg./Min.	Max./Min.	$L_{v(max)}/L_{avg}$	
Conventional Roadway Light	nventional Roadway Lighting					
Freeway	1.5	N/A	≤ 4:1	≤ 10:1	≤ 0.3:1	
Major Arterials	1.5					
Other	1.0					
High Mast Roadway Lighting						
All Roads	0.8 - 1.0	N/A	≤ 3:1	≤ 10:1	N/A	
Signalized Intersection Lighting						
New Construction	3.0	2.3		≤ 10:1	N/A	
Lighting Retrofit	1.5 (std.)	1.5 (std.)	≤ 4 :1			
Lighting Kettoni	1.0 (min.)	1.0 (min.)				
Midblock Crosswalk Lighting						
Low Ambient Luminance	N/A	2.3	N/A	N/A	N/A	
Medium & High Ambient Luminance		3.0				

Source: FDOT Design Manual, Table 231.2.1

- Horizontal Illuminance
 - The amount of light that falls onto a horizontal surface
- Vertical Illuminance
 - The amount of illuminance that lands on a vertical surface
 - Pedestrian safety
- Uniformity
 - A long adaption procedure caused by nonuniformed lighting patterns
 - Reduced driver vision for detecting objects



Advanced Lighting Measurement Technologies

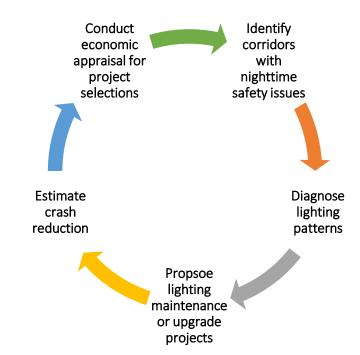
- Traditional "manual" lighting measurement
 - Costly (\$5,000+/mile)
 - Worker safety concerns
 - Driver safety concerns
 - Manpower
 - Accuracy/reliability

- Advanced lighting measurement System (ALMS)
 - Developed by CUTR
 - High-resolution (up to 2-4 readings per 10 feet per lane)
 - High efficiency (speed ≤ 80 mph)
 - Low cost (\$300/mi)



ALMS Data and Applications

- The CUTR team collected lighting data in Tampa Bay since 2012
- "Big" lighting data Inventory
 - 400+ center-miles
 - 1.2 million lighting points
- Has been used in FDOT D7 nighttime safety management
 - Lighting level check
 - Lighting retrofit validation
 - LED/HPS comparison
- How do we fully and efficiently use the ALMS data in nighttime safety management?



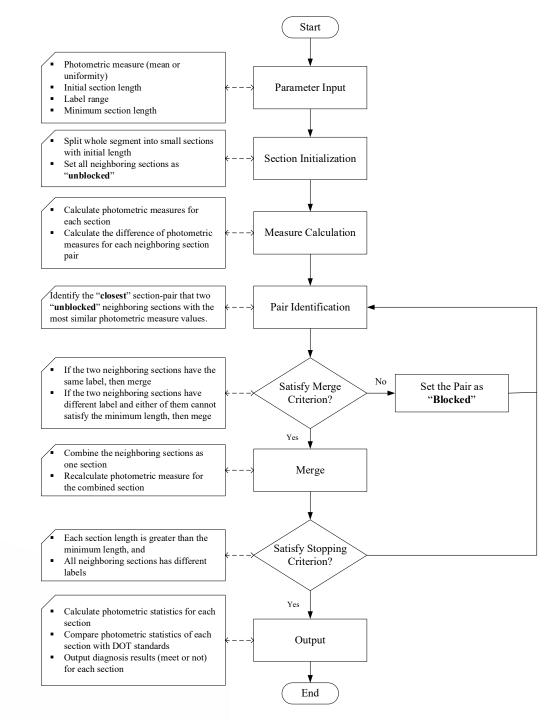
User Needs in Nighttime Safety Management

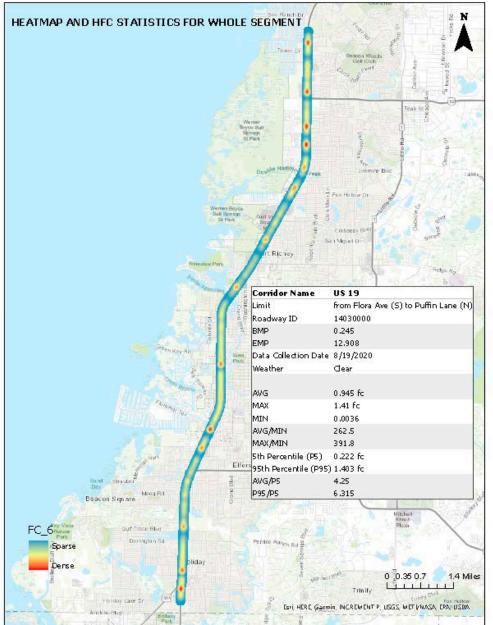
- Feedbacks from stakeholders (FDOT D7 and JMT, Inc.)
- Diagnose lighting patterns
 - Identify subsegments that do not meet FDOT lighting standards
- Predictive nighttime crash risk
 - Given lighting patterns and other factors
 - More reliable than historical crashes
- Estimate nighttime crash reduction due to a proposed lighting upgrade
 - Nighttime crash reduction
 - Decision-making support
- Visualize analysis results
 - GIS Map, Figures, Tables, ...
- A computer tool

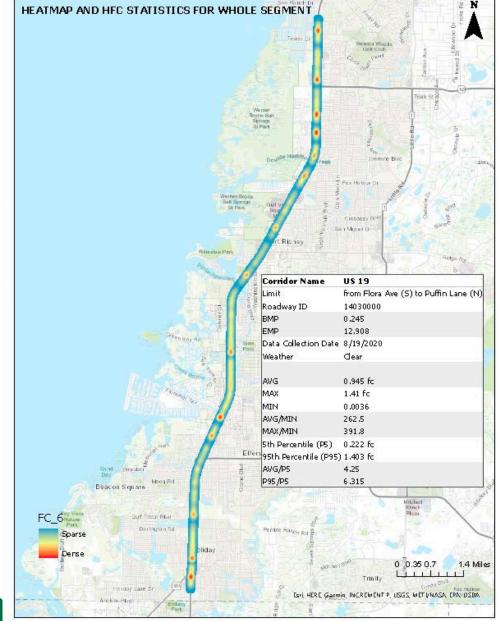
Research Objectives

- To develop innovative methods and tools that automatically and intelligently conduct nighttime safety management based on the ALMS data
 - Develop diagnosis algorithms that can effectively recognize lighting patterns and identify zones with poor lighting performance (e.g., do not meet standards).
 - Develop crash prediction models to predict nighttime crash risk associated with given lighting patterns and other factors.
 - Develop a prototype of computer tools for automatically processing and analyzing collected lighting data.
 - Realize the diagnosis and prediction models
 - Technology Readiness Level (TRL) is Level 7: Prototype Demonstrated in Operational Environment.
 - Implement the developed tools using Florida Department of Transportation (FDOT) lighting measurement projects as case studies.

Lighting Diagnosis Algorithms


- Engineers need to check photometric statistics of roadway segments
 - Average lighting level Mean of horizontal illuminance (Avg)
 - Uniformity Max/Min, Avg/Min
- Example
 - Overall Avg: 0.85 fc, Max/Min: 14.19, Avg/Min: 8.54
 - Cannot correctly address the diversity of lighting patterns in the two sections




- Hierarchical clustering methods
- Split the whole segment into small zones
- Calculate photometric statistics for each zone
- Combine the most "similar" neighboring zones as a new zone
- Repeat until satisfy the stopping criterions
 - Each zone ≥ the minimum zone length
 - Each neighboring zone pair are significant difference

Safety Performance Function for Lighting Patterns along A Corridor

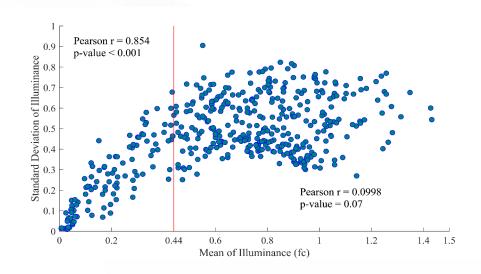
- Safety effects of street lighting on roadway segments: Development of a crash modification function
 - https://doi.org/10.1080/15389588.2019.1573317
 - Random Parameter Negative Binomial Regression

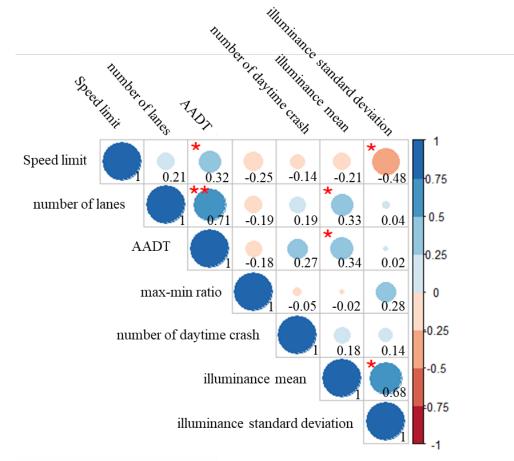
Yearly Nightime Crash Frequency

```
= exp(-4.969 - 0.42 · Mean of HFC + 0.769 · SD of HFC
+ 0.526 · LNAADT + 0.236 · High HV% + 1.161 · Length
+0.036 · Access Density + 0.456 · Undivided + 0.283 · Urban)/4
```

• Empirical Bayesian (EB) Model to combine Predictive and Historical Nighttime crash data

Expected Nighttime Crash Frequecy


 $= (1 - w) \cdot \text{Historical Crash frequency} + w \cdot \text{Predicted crash freequency}$



Crash Modification Factors for Lighting Patterns

- No reliable CMFs for lighting patterns were found in previous studies
- Technical challenges
 - To isolate the effects of lighting pattern factors from confounders
 - High lighting level ↔ high level roads ↔ high AADT

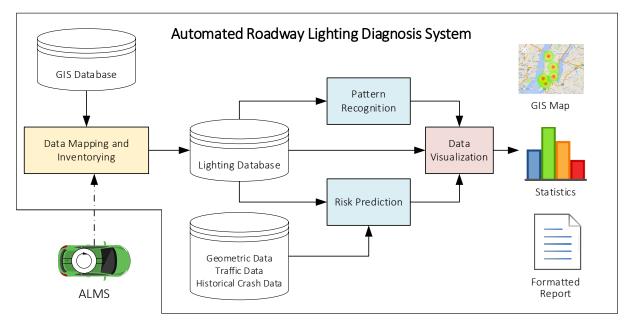
Matched Case-Control Method

- 2,440 segments with a uniform length of 1,200 ft and ALMS data
- Case: a segment with nighttime data
- Control: a segment <u>without</u> nighttime data
- Randomly match one case to one control as a stratum
 - Values for matching variables: AADT and SD of illuminance are in the same categories for each stratum
 - Eliminate the influence from two confounders
- Conditional Logistic Model
 - Odds Ratios

CMFs for Lighting Patterns on Corridors

from a matched case-control study

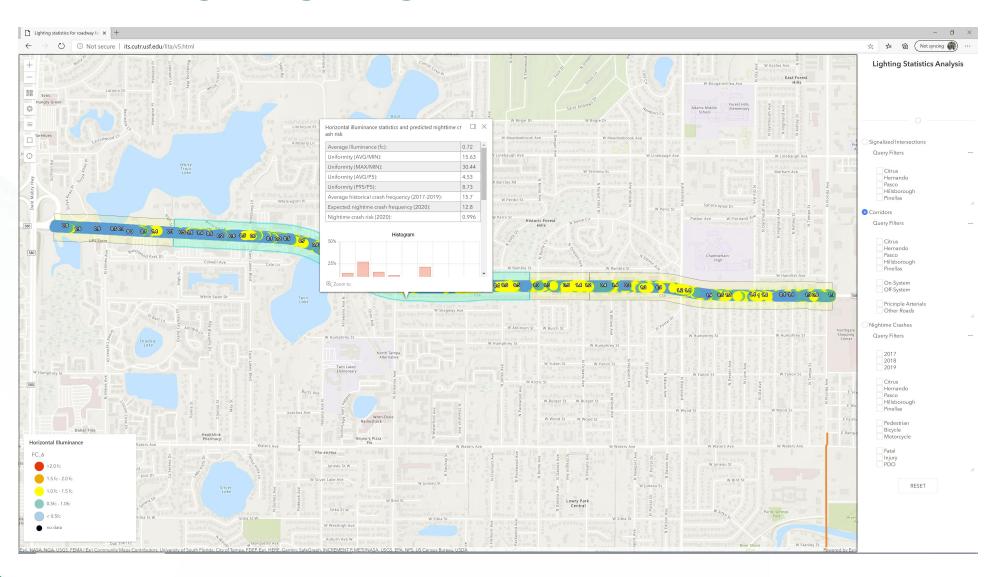
Lighting Statistics	Change	CMF	95% CI for CMF
Mean of horizontal illuminance (fc)	$< 0.5 \text{ fc} \rightarrow (0.5 \text{ fc}, 1.0 \text{ fc})$	0.679	[0.468, 0.984]
	$< 0.5 \text{ fc} \rightarrow > 1.0 \text{ fc}$	0.581	[0.367, 0.922]
Uniformity Max-Min Ratio	> 10 → < 10	0.719	[0.533, 0.970]



Development of Computer Tools

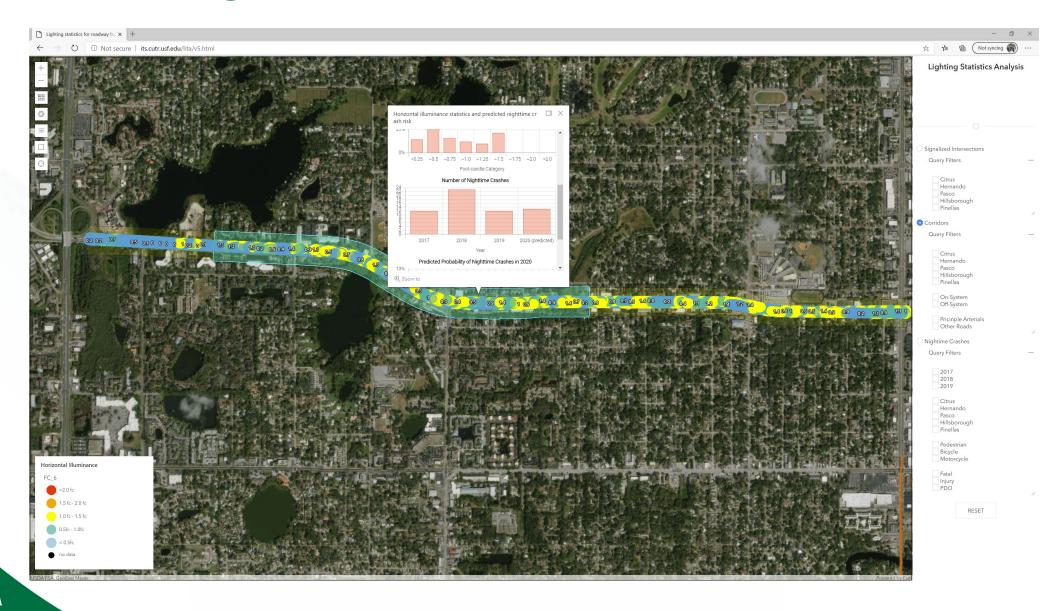
- Powered by Esri ArcGIS web-GIS technologies
- Web Service APIs
 - Can be called from web browsers and desktop apps
- http://its.cutr.usf.edu/lita
- ALMS: http://its.cutr.usf.edu/alms

System Component	Tool/Technology			
Deployment – Server Side				
Web Server	Windows Server 2012 R2			
GIS Server	ArcGIS Server 10.8			
GIS Service	ArcGIS Geoprocessing Service			
GIS Library	ArcPy, Numpy, Pandas			
Deployment – Client Side				
Web Page	Browsers + ArcGIS API for JS			
Desktop Apps	ArcGIS Pro / ArcGIS Map			

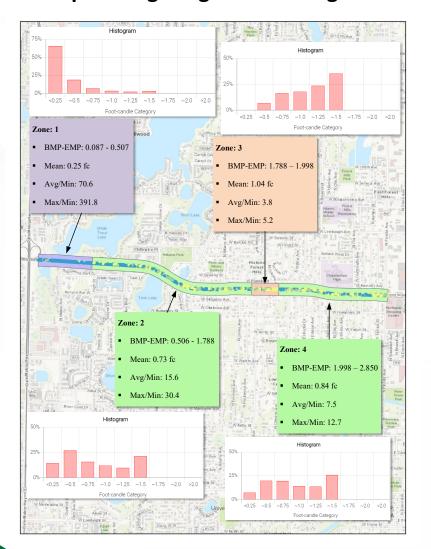


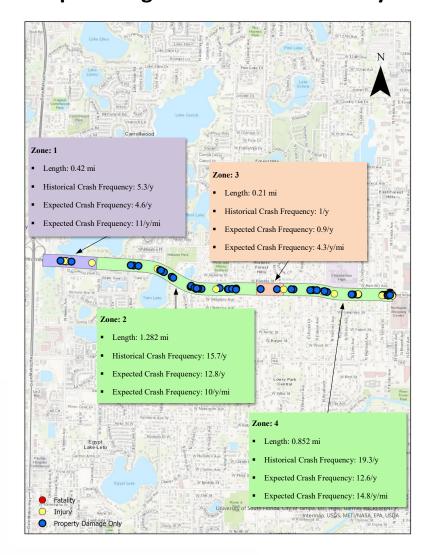
	Function	Algorithm/Technology	Description	
	Lighting Pattern Diagnosis	Hierarchical Clustering Model	Distinguish lighting patterns that do not satisfy FDOT standards	
	Crash Risk Prediction	 Safety Performance Function Empirical Bayesian Model CMF developed by Case-Control Study 	 Predict nighttime crash frequency by lighting, traffic, and geometry conditions Estimate nighttime crash reduction due to lighting pattern improvement 	
	Data Visualization	Web-GIS	Present analysis results on GIS map	

Demo – Lighting Diagnosis


Demo – Lighting Diagnosis

Demo – Nighttime Crash Prediction





Case Study – W Busch Blvd, Tampa, Florida

Step – 1: Lighting Pattern Diagnosis

Step – 2: Nighttime Crash Risk Analysis

Step – 3: Benefit Estimation for Proposed Lighting Upgrade

		Zone 1	Zone 2	Zone 3	Zone 4	
	Existing	0.25 fc	0.73 fc	1.04 fc	0.84 fc	
Mean of Illuminance	Proposed	1.5 fc	1.5 fc	1.5 fc	1.5 fc	
	CMF _M	0.581	0.856	1	0.856	
	Existing	391.8	30.4	5.2	12.7	
Max/Min	Proposed	10	10	10	10	
	CMF_U	0.718	0.718	1	0.718	
Expected Nighttime Crash Frequency (per year)		4.6	12.8	0.9	12.6	
$CMF_M \times CMF_U$		0.417	0.615	1	0.615	
Crash Reduction Factor		0.583	0.385	0	0.385	
Estimated Crash Reduction (per year)		2.7	4.9	0.0	4.9	
Total Crash Reduction			12.5 crashes per year			

Next Step

- Enhance core functions
 - Lighting diagnosis algorithm based on multiple measures
 - SPFs and CMFs for pedestrians
 - SPFs and CMFs for LED technologies
 - User-friendly User Interface
- Improve the prototype to product
 - Implement and test the computer tools in current FDOT D7 lighting projects
 - Technology Readiness Level (TRL) Level 8: Technology Proven in Operational Environment

Zhenyu Wang, Ph.D. zwang9@cutr.usf.edu

