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Abstract 
Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and 

security for multimodal road users (motorists, pedestrians, cyclists, transit passengers). The 
Advanced Lighting Measurement System (ALMS) developed by CUTR provides a low-cost and 
effective solution for collecting high-resolution lighting data for a big-scale roadway network. A 
previous CTEDD-study (Development of Automated Roadway Lighting Diagnosis Tools for 
Nighttime Traffic Safety Improvement, Phase I) developed and improved an analysis tool to 
diagnose lighting patterns and estimate nighttime crash risks based on big lighting data. This 
Phase II project aimed to enhance the methods and tools developed in Phase I to investigate the 
impacts of lighting patterns on nighttime pedestrian crashes, address the effectiveness of LED 
technologies, develop a sliding window algorithm for uniformity diagnosis, and recode the 
analysis engine to integrate more functions and improving processing speed. 

 The study adopted the matched case-control method, which can address the 
critical issue in lighting data—the confounding effects between illuminance mean and standard 
deviation—to investigate the impacts of lighting patterns on nighttime pedestrian crashes. Crash 
Modification Factors (CMFs) for the mean of horizontal illuminance (representing average 
lighting level) and the standard deviation of horizontal illuminance (representing uniformity) 
were developed to quantify the impacts. The study also developed a Safety Performance 
Function (SPF) for LED technologies based on Florida Department of Transportation (FDOT) 
District 7 light pole inventory data. The SPF indicates that lighting upgrading projects (HPS to 
LED) in Florida tend to decrease nighttime crash frequency by 17%. In addition, a sliding 
window algorithm was developed to diagnose lighting uniformity by scanning the lighting 
patterns along a segment and calculating the uniformity measures within a limited area covering 
driver vision field. Compared to uniformity for the whole segment, the algorithm can provide 
more reasonable and detailed diagnosis of lighting uniformity. In addition to developing new 
models, the analysis engine was recoded to include more functions and improve processing 
speed. The new analysis engine realizes the functions of connecting different data sources, 
lighting diagnosis, nighttime crash prediction, and geometric and traffic data processing; with the 
optimized codes, its process time is reduced by 90%.  

The developed methods and tools are being applied in FDOT District 7’s district-wide 
lighting collection and analysis task. The analysis results will provide decision-making support 
for FDOT District 7 roadway lighting maintenance and nighttime safety management.  
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Chapter 1: Introduction 

1.1 Background 

Nighttime crashes, particularly those that result in fatalities and injuries, are over-
represented on the U.S. highway system. Roadway lighting is a vital countermeasure to increase 
visibility at night and provides clear safety benefits for multimodal users such as drivers, 
motorcyclists, pedestrians, bicyclists, and transit-dependents. In 2019–2020, the research team 
developed a prototype of computer tools in a CTEDD-funded research project titled 
“Development of Automated Roadway Lighting Diagnosis Tools for Nighttime Traffic Safety 
Improvement.” The computer tools (http://its.cutr.usf.edu/lita), built on the Esri ArcGIS web-
GIS platform, provide core functions of data management, data analysis, and data visualization 
for lighting analysis and safety management, as shown in Figure 1-1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Lighting analysis and nighttime safety management 

However, the prototype of the computer tools still has some limitations: 

• Safety analysis for vulnerable users – The prototype is used primarily for vehicular 
nighttime crash analysis rather than vulnerable users. As nighttime crashes account for 
almost 70% of pedestrian fatalities (2), vulnerable users (pedestrians and bicyclists) are a 
major concern in nighttime safety management. Limited previous studies (3, 4) 
investigated the impacts of street lighting patterns on nighttime pedestrian/bicyclist crash 
risk; no implementable Crash Modification Factors (CMFs) of lighting patterns for 
vulnerable users were identified from these previous studies. It is necessary to develop 
CMFs for lighting patterns for vulnerable users based on ALMS data and integrate them 
into the computer tools. 
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• Safety analysis for LED lighting – The prototype does not distinguish LED technology 
and traditional technologies such as High-Pressure Sodium (HPS) in safety analyses. As 
more and more road corridors have been upgraded to LED systems in Florida and 
nationwide recently, engineers and managers need to assess the safety performance of 
LED technology, which has different vision characteristics from HPS. The SPFs and 
CMFs developed in the prototype were based primarily on HPS lighting data and cannot 
capture the safety characteristics of LED lighting. Only one previous study (5) explored 
the impacts of LED upgrade on nighttime crashes. The proposed study needs to develop 
or calibrate CMFs for LED lighting based on FDOT District LED upgrade projects 
conducted in the past decade. The enhanced computer tools in Phase II will integrate the 
CMFs for LED lighting and provide a function to stratify stakeholder needs in assessing 
the safety performance/benefits of LED lighting projects. 

• Functionality – The prototype provides an initial function of lighting pattern diagnosis, a 
simple user interface, and non-optimized geoprocessing codes. It is necessary to enhance 
these functions to provide an implementable product with full functionality.  

1.2 Research Objectives 

This project aimed to enhance the prototype of the Automated Roadway Lighting 
Diagnosis Tools developed in Phase I and produce an implementable system at Technology 
Readiness Level (TRL) Level 8: Technology Proven in Operational Environment. More 
specifically, the research objectives are as follows: 

• Develop roadway lighting safety analysis methods for pedestrians, who are major 
concerns in nighttime safety.  

• Develop safety analysis methods for LED bulbs that have different photometric 
performance from traditional lighting technologies. 

• Improve the roadway lighting diagnosis algorithms to recognize “unsafe” uniformity 
patterns more effectively. 

• Enhance the functionality of the lighting analysis platform developed in Phase I, 
including optimal processing speed and include more functions.  

• Implement the developed methods and tools for the FDOT District 7 district-wide 
lighting measurement project.  
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Chapter 2: Impacts of Lighting Patterns on  
Nighttime Pedestrian Crashes 

2.1 Introduction 

Nighttime pedestrian crashes are a major concern in transportation safety management. 
Fatality Analysis Reporting System (FARS) data indicate that 4,580 pedestrians were killed in 
dark environments in the U.S. in 2019, accounting for 74% of pedestrian fatalities that year (2). 
Among these, 72% occurred at midblock and 23% were intersection-related. Reduced visibility 
at night is an inherent factor that increases the risk of vehicle-pedestrian collisions.  

Driving is a visual effort, in that drivers continuously scan the surrounding environment 
to identify potential risks. If an object (e.g., a pedestrian) presents on a route, the driver needs 
sufficient time to detect the object and take action (e.g., braking and avoidance maneuvers) to 
avoid a potential collision. Drivers detect pedestrians at night primarily as a result of luminance 
contrast—the visual (luminance) difference between the pedestrian and the background (6). 
Street lighting is an effective way to increase luminance contrast (visibility) of pedestrians at 
night and to improve driver detection ability (7, 8). Existing studies have addressed the safety 
effects of installing street lighting on pedestrian safety. Jensen (9) suggested that installing 
roadway lighting can reduce pedestrian injuries by about 45% when the speed limit exceeds 50 
km/h and 12% when the speed limit is less than 50 km/h. Siddiqui et al. (10) found that roadway 
lighting reduced pedestrian crash odds by 42% at midblock locations and 54% at intersections 
compared to dark conditions with no lighting. Sullivan and Flannagan (11) showed that lighting 
improved pedestrian safety in three crash scenarios—curve, motorway, and corner. Nambisan et 
al. (12) studied the impacts of lighting crosswalks and concluded that lighting enhances 
pedestrian safety. Mohamed et al. (13) found that the probability of fatal pedestrian crashes 
increased when the roadway was not lighted rather than lighted. Olszewski et al. (14) concluded 
that, compared to daytime, nighttime pedestrian crashes increased 1.95 times with roadway 
lighting and 4.08 times without roadway lighting at unsignalized crosswalks. Patella et al. (15) 
found that vehicle average speed decreased by 19.3% at crosswalks in illuminated conditions and 
confirmed the positive effects of roadway lighting on nighttime pedestrian safety.  

Despite these insightful developments, the effects of lighting photometric patterns (i.e., 
average lighting and lighting uniformity) on nighttime pedestrian crashes remain unclear. 
Intuitively, drivers can easily detect pedestrians in a bright environment and have more 
opportunities to avoid collisions. When driving in uneven lighting conditions (i.e., from a dark 
environment to a bright visual field or vice versa), drivers need additional time to adapt to the 
new lighting conditions, and their visual functions may be degraded during the adaption, which 
increases crash risks. A well-designed street lighting pattern (bright and uniform) can increase 
pedestrian luminance contrast against the roadway surface and aid human eyes in adapting to a 
changing lighting environment better than headlights alone. Several previous studies have 
addressed the safety effects of street lighting patterns on vehicle crashes and developed crash 
modification factors (CMFs) (16–21). However, little effort has been made to explore the impact 
of lighting patterns on nighttime pedestrian crashes. Zhou and Hsu (22) reported that nighttime 
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pedestrian crash frequency at low lighting level segments was much higher than at high lighting 
level segments. Wei et al. (18) found that horizontal illuminance of 0.9 foot-candle (fc) or higher 
can reduce the likelihood of fatal and serious pedestrian injury by 10.7% at signalized 
intersections. Nabavi Niaki et al. (3) concluded that nighttime pedestrian crash frequency 
increased with average lighting conditions and attributed this counterintuitive finding to driver 
safety compensation in the dark environment and selection bias (traffic agencies tend to improve 
roadway lighting at sites that experience more crashes).  

Two photometric parameters are widely used in the roadway lighting design (6). Average 
horizontal illuminance—the average number of lumens that fall onto a unit of pavement surface 
either in foot-candle (fc, lumens per ft2) or lux (lx, lumens per m2)—measures the average 
lighting level on a roadway segment. Illuminance ratio—the maximum illuminance divided by 
the minimum illuminance (max-to-min ratio) or the average illuminance divided by the 
minimum illuminance (mean-to-min ratio)—represents the uniformity of street lighting patterns 
along a segment. It has been argued that the ratio-based uniformity measures may not accurately 
capture the “true” lighting patterns that influence driver vision in large-scale lighting analysis 
(i.e., roadway corridor) because of the potential issue of spatially-unrelated extreme lighting 
points (21, 23, 24). To overcome this disadvantage of ratio-based uniformity criteria, two 
previous studies (23, 24) adopted the standard deviation of horizontal illuminance as the 
uniformity measure, arguing that it uses the information of all lighting points and thus prevents 
the issue of spatially-unrelated extreme lighting points. However, as Yang et al. (23) indicated, 
the standard deviation of illuminance is strongly and positively correlated to the illuminance 
mean, especially in a low mean range, which may cause a collinearity issue such that the model 
cannot distinguish the safety effects of the mean and the standard deviation (25). This correlation 
issue is a significant limitation in a previous study conducted by Nabavi Niaki et al. (3) that 
ignored the counteracting effects of the standard deviation of illuminance on the illuminance 
mean and might lead to the counterintuitive conclusion—a high illuminance mean 
(accompanying a high standard deviation) is associated with a high pedestrian crash frequency 
(probably caused by the high standard deviation [poor uniformity]) at intersections. 

2.2 Research Objectives 

The literature review indicated several research gaps that exist in nighttime pedestrian 
safety studies—1) due to lack of lighting data, few studies explored the effects of street lighting 
patterns (brightness and uniformity) on nighttime pedestrian crashes, and no CMFs were 
developed; 2) counterintuitive findings of the illuminance mean were observed, probably due to 
ignoring the counteracting effects of the standard deviation of illuminance (3); and 3) the safety 
effects of illuminance patterns for pedestrians on midblock segments that experience a sizable 
portion of nighttime pedestrian crashes were not well-addressed. 

Motivated by these research gaps, this study quantified the safety effects of illuminance 
photometry on nighttime pedestrian crash frequency at midblock. Matched case-control studies 
were applied to address the critical issues in previous studies—the confounding effects of the 
standard deviation of illuminance on illuminance mean and spatially-unrelated extreme values 
for ratio-based uniformity measures. Based on the modeling results, reliable and implementable 
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CMFs of lighting photometric criteria (average lighting and lighting uniformity) were developed 
for nighttime pedestrian crash study and management. 

2.3 Methodology 

2.3.1 Matched Case-Control Study 

The matched case-control method has been used in highway safety to relate risk factors to 
a specific outcome (i.e., crash occurrence) with confounding effects (26–29). Li et al. (21) 
recently adopted the matched case-control method to develop CMFs of lighting photometric 
criteria for nighttime vehicle crashes. Compared to cross-sectional studies, the matched case-
control method is more pertinent for lighting-related crash modeling. First, it is suitable for rare-
events modeling (e.g., nighttime pedestrian crashes) and addresses the low mean and aggregation 
bias issues in the cross-sectional studies (30). Second, it effectively eliminates the impacts of 
confounding variables (i.e., counteracting effects of the standard deviation of illuminance on the 
mean, and vice versa) because each matched case-control stratum shares the same or similar 
values of the confounding variables (31). Finally, it guarantees a balanced number of cases and 
controls so the variance in the parameters of interest is reduced and the statistical efficiency of 
the model estimation is improved (32). Motivated by these merits, this study adopted the 
matched case-control method to fit nighttime pedestrian crashes and lighting data. 

Steps for conducting a matched case-control study are as follows: 

1. Define – Roadway segments with a uniform length are categorized into two groups—1) 
case, for a roadway segment that experienced at least one nighttime pedestrian crash in 
the study period, and 2) control, for a roadway segment that did not experience any 
nighttime pedestrian crashes in the study period.  

2. Match – A certain number of controls are randomly matched to each case based on the 
similarity of confounding variables related to both the risk factor of interest (e.g., 
photometric patterns) and the outcome (i.e., nighttime pedestrian crash). With this 
matching technique, the biased estimations on the association between the risk factor of 
interest and the outcome can be avoided by mitigating the disturbance from confounders 
(31). The case-control ratio is determined by the minimum ratio of controls to cases 
among all cross-classification categories.  

3. Model – A conditional logistic regression model is developed based on the matched case-
control strata. The odds ratio, which represents the change of relative nighttime crash 
risks due to an alternation of unmatched risk factors (e.g., street lighting photometry), is 
derived from the fitted model and could be used as the equivalent of a CMF (27, 33). 

2.3.2 Conditional Logistic Regression 

Conditional logistic regression extends logistic regression by accounting for stratification 
in matched case-control studies (34). Let 𝑦𝑦𝑖𝑖𝑖𝑖 denote the 𝑗𝑗th observation (𝑖𝑖 = 1, 2, ⋯, 𝐼𝐼) of the 𝑖𝑖th 
stratum 𝑗𝑗 (𝑗𝑗 = 1, 2, ⋯, 𝐽𝐽). The unconditional likelihood of one observation is  
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 Pr�𝑦𝑦𝑖𝑖𝑖𝑖 = 1� =  
exp �𝛼𝛼𝑖𝑖 + 𝜷𝜷𝑿𝑿𝒊𝒊𝒊𝒊�

1 + exp �𝛼𝛼𝑖𝑖 + 𝜷𝜷𝑿𝑿𝒊𝒊𝒊𝒊�
 (1) 

where 𝑿𝑿𝒊𝒊𝒊𝒊 is a vector of 𝑘𝑘 explanatory variables associating with 𝑦𝑦𝑖𝑖𝑖𝑖; 𝜷𝜷 is the coefficients 
corresponding to 𝑿𝑿𝒊𝒊𝒊𝒊; 𝛼𝛼𝑖𝑖 is the stratum-specific interpretation term reflecting the different 
combination effects of confounding variables for different strata. Maximum Likelihood 
Estimation (MLE) based on the unconditional likelihood is invalid and biased, as the number of 
parameters (𝐼𝐼 + 𝑘𝑘) grows with the number of observations (assuming the case-control ratio is 
fixed).  

To eliminate unnecessary parameters (𝛼𝛼𝑖𝑖), the conditional likelihood of each stratum 𝑖𝑖 is 
calculated as: 

 𝐿𝐿(𝑌𝑌𝑖𝑖|𝜷𝜷) = 𝑃𝑃�𝑦𝑦𝑖𝑖1 = 1,𝑦𝑦𝑖𝑖𝑖𝑖 = 0 for 𝑗𝑗 > 1 | 𝑿𝑿𝒊𝒊𝒊𝒊,�𝑦𝑦𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

= 1,𝜷𝜷� =
exp (𝜷𝜷𝑿𝑿𝒊𝒊𝒊𝒊)

∑ exp (𝜷𝜷𝑿𝑿𝒊𝒊𝒊𝒊)𝑗𝑗∈𝐽𝐽
 (2) 

where 𝑦𝑦𝑖𝑖1 is the case observation of the 𝑖𝑖th stratum; 𝑦𝑦𝑖𝑖𝑖𝑖  for 𝑗𝑗 > 1 are the matched controls 
of the 𝑖𝑖th stratum; 𝑿𝑿𝒊𝒊𝒊𝒊 is the vector of explanatory variables associating with 𝑦𝑦𝑖𝑖1. As the strata are 
assumed to be independent of each other, the conditional log-likelihood function 𝐿𝐿𝐿𝐿(𝑌𝑌|𝛽𝛽) over 
the population of I strata can be written as (31): 

 𝐿𝐿𝐿𝐿(𝑌𝑌|𝜷𝜷) = −� ln
𝐼𝐼

𝑖𝑖=1
�1 + � exp�𝜷𝜷�𝑿𝑿𝒊𝒊𝒊𝒊 − 𝑿𝑿𝒊𝒊𝟏𝟏��

𝑗𝑗𝑗𝑗𝑗𝑗
� (3) 

The MLE is used to maximize 𝐿𝐿𝐿𝐿(𝑌𝑌|𝜷𝜷) with respect to 𝜷𝜷. 

2.3.3 Odds Ratio 

The odds ratio indicates the change of relevant risk due to the alternation of an 
explanatory variable. Based on the definition, the odds ratio is equivalent to the CMF. For a 
dummy variable, the odds ratio is defined as the ratio of the odds that nighttime crashes occur in 
the presence of a roadway characteristic k (𝑥𝑥𝑘𝑘 = 1) to the odds that nighttime crashes occur in the 
absence of that roadway characteristic k (𝑥𝑥𝑘𝑘 = 0), holding other variables constant. The odds ratio 
for a dummy variable can be written as follows. 

 𝑂𝑂𝑂𝑂(𝑥𝑥𝑘𝑘) =

𝑃𝑃(𝑦𝑦𝑖𝑖0 = 1|𝑥𝑥𝑘𝑘 = 1,𝒁𝒁)
[𝑃𝑃(𝑦𝑦𝑖𝑖0 = 0|𝑥𝑥𝑘𝑘 = 1,𝒁𝒁)]
𝑃𝑃(𝑦𝑦𝑖𝑖0 = 1|𝑥𝑥𝑘𝑘 = 0,𝒁𝒁)

[𝑃𝑃(𝑦𝑦𝑖𝑖0 = 0|𝑥𝑥𝑘𝑘 = 0,𝒁𝒁)]

= exp(𝛽𝛽𝑘𝑘) (4) 

where Z is the vector of explanatory variables other than 𝑥𝑥𝑘𝑘; 𝛽𝛽𝑘𝑘 is the estimated parameter for 𝑥𝑥𝑘𝑘.  
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2.4 Model Development 

2.4.1 Data Collection 

Researchers at the Center for Urban Transportation Research (CUTR) at the University of 
South Florida used the Advanced Lighting Measurement System (ALMS) (35) to collect the 
horizontal illuminance data. This system precisely measures horizontal illuminance and 
generates two measurement points every 10 ft for each lane. With this system, the CUTR team 
completed illuminance measurements for more than 300 center miles in Tampa from 2011 to 
2014. The data were collected in an entirely dark environment (9:30–11:59 PM) to ensure that no 
natural light was present. In this study, 440 roadway corridors in urban and/or suburban areas 
with street lighting data were identified based on the following criteria—1) roadway sections 
between two successive signalized intersections, 2) equipped with High-Pressure Sodium (HPS) 
light bulbs, and 3) no upgrades on street lighting in the past several years. A 250-ft buffer was 
subtracted from the two ends of the roadway corridor to exclude influence from adjacent 
signalized intersections. 

2.4.2 Case and Control Definition 

The 440 roadway corridors were separated into small segments with a uniform length. 
Different segment lengths (600 ft, 800 ft, 1000 ft, 1200 ft, 1400 ft) were tested, and the length of 
600 ft was selected, given that it produced the best model results in terms of the variable 
significance. In total, 1,638 segments were produced. 

Nighttime crash data from 2011 to 2014 were matched to roadway segments. A case was 
defined as a segment that experienced at least one nighttime pedestrian crash, and a control was 
defined as a segment that did not experience any nighttime pedestrian crashes. The measured 
lighting data points (horizontal illuminance at foot-candle, HFC) that fall into the same roadway 
segment were used to calculate the mean and standard deviation. Segments with missing 
information were screened out, which left 1,234 segments for matching. 

2.4.3 Matching 

The HFC mean and standard deviation, representing average brightness and uniformity, 
respectively, are confounders of each other because they are correlated and both related to the 
outcome (i.e., nighttime crashes) (21). As plotted in Figure 2-1, it is clearly observed that the 
mean and standard deviation of HFC are positively correlated; the correlation becomes more 
significant as the mean decreases. When the mean is less than 0.7 fc, Pearson’s correlation 
coefficient is as great as 0.86, indicating a strong correlation. This correlation may prevent 
models to correctly distinguish the safety effects of one criterion from another. Because the 
impacts of the two photometric measures on crashes are theoretically converse, the positive 
correlation between them may result in counterintuitive estimations. Therefore, when quantifying 
the safety effects of one photometric measure, it is necessary to control the impacts of another to 
develop reliable CMFs. In this study, two models were developed—1) matching the standard 
deviation to address the impact of the mean on nighttime pedestrian crash occurrence, and 2) 
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matching the mean to address the impact of the standard deviation on nighttime pedestrian crash 
occurrence. 

 
Figure 2-1. Illuminance standard deviation vs. illuminance mean 

Annual Average Daily Traffic (AADT), representing traffic exposures, is another 
confounder commonly matched in case-control studies for vehicle crashes (21, 26, 28, 29, 36, 
37). However, AADT does not present a strong correlation with either the mean (r = 0.29) or 
standard deviation (r = -0.03). To avoid overmatching, this study treated AADT as an 
explanatory variable rather than a matching variable.  

As both the mean and standard deviation are continuous, it is impossible to match them 
by the exact values. The following procedures were carried out to categorize them into different 
levels—1) calculate the mean 𝜇𝜇 and standard deviation 𝜎𝜎 of the two photometric measures, 
respectively, and 2) categorize the two photometric measures based on 𝜇𝜇 and 𝜎𝜎. The cutoff 
values are −∞,μ − 1.5σ, μ − 0.5σ, μ + 0.5σ, μ + 1.5σ and + ∞.  

Sample sizes by matched categories are presented in Table 2-1. To keep the number of 
samples of different categories as high as possible, a case-control matching ratio of 1:6 was used, 
as it is the minimum in Table 2-1. This makes the analysis power of the case-control study 
approximately 98% (30).  

Table 2-1. Matched Categories and Sample Sizes 
HFC Mean (fc) 

Total <0.045 0.045-0.421 0.421-0.797 0.797-1.172 >1.172 
Case Control Case Control Case Control Case Control Case Control 

6 131 21 237 36 350 36 369 6 42 1234 
HFC Standard Deviation (fc) 

Total <0.069 0.069-0.299 0.299-0.529 0.529-0.760 >0.760 
Case Control Case Control Case Control Case Control Case Control 

7 162 12 131 37 494 42 298 7 44 1234 
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2.4.4 Descriptive Statistics 

A stratum consists of one case and six randomly-matched controls. A total of 105 strata 
(105 cases and 630 controls) were identified. Explanatory factors for each segment were 
converted into dummy variables. Descriptive statistics of explanatory variables are provided in 
Table 2-2. 

Table 2-2. Descriptive Statistics of Explanatory Variables 

2.5 Model Estimation 

The software package STATA 16 (38) was used to fit the two conditional logistic 
regression models—mean and standard deviation. The fitted models are presented in Table 2-3 
and Table 2-4, respectively. The coefficients, odds ratio (or equivalent to CMF), confidence 
interval (CI) of OR, and standard error (SE) of OR were reported. All ORs were significant at a 
confidence level of 95% or higher in the two models. 

Table 2-3. Fitted Conditional Logistic Model for HFC Mean 

 

Variable Description 

Mean Model Standard Deviation Model 
Case  

(n = 105) 
Control  
(n = 630) 

Case  
(n = 105) 

Control  
(n = 630) 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
HFC mean < 0.2 fc  0.171 0.379 0.133 0.340 \ \ \ \ 
0.2 fc ≤ HFC mean ≤ 0.5 fc 0.133 0.342 0.152 0.360 \ \ \ \ 
0.5 fc < HFC mean ≤ 1.0 fc 0.505 0.502 0.537 0.499     
HFC mean > 1.0 fc 0.192 0.396 0.178 0.383 \ \ \ \ 
HFC std dev < 0.52 fc \ \ \ \ 0.514 0.502 0.671 0.470 
HFC std dev ≥ 0.52 fc \ \ \ \ 0.486 0.502 0.329 0.470 
Daytime pedestrian crash 

occurred 
0.191 0.395 0.044 0.206 0.191 0.395 0.037 0.188 

Shoulder width < 9 ft 0.581 0.496 0.371 0.484 0.581 0.496 0.346 0.476 
Curve presence 0.171 0.379 0.344 0.476 0.171 0.379 0.340 0.474 
Access points > 12 0.286 0.454 0.220 0.415 0.286 0.454 0.173 0.379 
AADT per lane > 6200 0.600 0.492 0.573 0.495 0.600 0.492 0.613 0.488 

Variable Coef. z p-value OR (CMF) 95% CI of OR SE of 
OR 

HFC mean  
< 0.2 fc Baseline 
[0.2 fc, 0.5 fc] -1.49 -2.16 0.031 0.225 [0.058, 0.870] 0.155 
(0.5 fc, 1.0 fc] -1.67 -2.34 0.020 0.188 [0.046, 0.764] 0.134 
 > 1.0 fc -1.93 -2.55 0.011 0.145 [0.032, 0.640] 0.110 

Daytime pedestrian crash 
occurred 1.31 4.46 0.000 3.719 [2.088, 6.623] 1.095 
Shoulder width < 9 ft 0.93 3.58 0.000 2.537 [1.523, 4.225] 0.660 
Curve presence -0.97 -3.10 0.002 0.378 [0.204, 0.699] 0.118 
Access points > 12 0.70 2.41 0.016 2.017 [1.141, 3.565] 0.586 
AADT per lane > 6,200 0.76 2.80 0.005 2.142 [1.256, 3.652] 0.583 

Model Statistics 
Number of observations 735 
Log-likelihood -172.671 
Pseudo R2 0.155 
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Table 2-4. Fitted Conditional Logistic Model for HFC Standard Deviation 

2.6 Discussion 

2.6.1 HFC Mean 

The mean of horizontal illuminance represents the average brightness of a roadway 
segment—the higher the HFC mean, the more visible the pedestrian. Theoretically, an increase 
in HFC mean should decrease nighttime pedestrian crash risks. The negative coefficients for 
HFC mean variables in Table 3 support this speculation. To be specific, if the HFC mean of a 
roadway segment increases from < 0.2 fc to [0.2 fc, 0.5 fc], the relatively nighttime pedestrian 
crash risk decreases to 0.255 times; if the HFC mean increases from < 0.2 fc to (0.5 fc - 0.1 fc], 
the relatively nighttime pedestrian crash risk decreases to 0.188 times. Further, if the HFC mean 
increases from < 0.2 fc to > 1.0 fc, the relatively nighttime pedestrian crash risk decreases to 
only 0.145 times. By controlling the HFC standard deviation, reductions of nighttime pedestrian 
crash risks when increasing the HFC mean are significant at a confidence level of 95%. 

Results also indicate a non-linear relationship between average lighting level and 
nighttime pedestrian crash risks. As shown in Figure 2-2, nighttime pedestrian crash risk declines 
very quickly in a low mean range (crash reduction factor of 0.775 [= 1 – 0.225] for < 0.2 fc → 
[0.2 fc, 0.5 fc]). With a continuous increase in average lighting level, nighttime pedestrian crash 
risk gradually decreases, but the reduction amplitude becomes smaller; the crash reduction 
factors for [0.2 fc, 0.5 fc] → [0.5 fc, 1.0 fc) is 0.164 (= 1 - 0.188/0.225) and for [0.5 fc, 1.0 fc) → 
> 1.0 fc is 0.229 (=1- 0.145/0.188). This trend also exists in nighttime vehicle crashes (19, 21, 
23).  

Variable Coef. z p-value OR 
(CMF) 95% CI of OR SE of 

OR 
HFC standard deviation  

< 0.52 fc Baseline 
≥ 0.52 fc 0.59 2.16 0.031 1.803 [1.056, 3.077] 0.492 

Daytime pedestrian crash 
occurred 1.68 4.52 0.000 5.373 [2.591, 11.139] 1.999 

Shoulder width < 9 ft 0.84 3.48 0.000 2.320 [1.444, 3.724] 0.560 
Curve presence -0.97 -3.13 0.002 0.378 [0.206, 0.695] 0.117 
Access points > 12 0.79 2.74 0.006 2.205 [1.253, 3.878] 0.635 
AADT per lane > 6,200 0.59 2.22 0.027 1.795 [1.070, 3.010] 0.474 

Model Statistics 
Number of observations 735 
Log-likelihood -167.414 
Pseudo R2 0.181 
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Figure 2-2. Trendline of CMFs of nighttime pedestrian crashes for HFC mean 

Visual figures of pedestrians may provide an intuitive understanding of the safety effects 
of horizontal illuminance on pedestrian visibility. Figure 2-3 represents a series of scenarios in 
which a pedestrian presents on the roadside with various horizontal illuminance levels. Figure 
2-3A represents a fully dark environment (HFC = 0.1 fc); although the pedestrian wears a safety 
jacket with retroreflective materials, it is still very difficult for a motorist to recognize him from 
the background, which implies that an extremely dark environment (< 0.2 fc) is very dangerous 
for pedestrians. Figure 2-3B represents a medium bright environment (HFC = 0.5 fc); human 
eyes can detect the pedestrian contour in this lighting condition and, compared to the extremely 
dark environment (Figure 2-3A), motorists have a much longer detection distance so the risk of 
pedestrian collisions may be greatly reduced. With an increase in lighting conditions to medium-
high (HFC = 1.0 fc, Figure 2-3C) and high (HFC = 1.5 fc, Figure 2-3D), pedestrian visibility is 
better, but the crash risk reduction effects of increasing the HFC from medium to medium-high 
and from medium-high to high are lower than increasing from fully dark (pedestrian is unseen to 
motorists) to medium bright (motorist can detect pedestrian contour). 

1
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A. HFC = 0.1 fc 

 

 
B. HFC = 0.5 fc 

 

 
C. HFC = 1.0 fc 

 
D. HFC = 1.5 fc 

Figure 2-3. Visual figures of pedestrians in various lighting conditions 

2.6.2 HFC Standard Deviation 

The HFC standard deviation is a uniformity measure; compared to ratio-based measures 
(max-min ratio or mean-min ratio), it can avoid the amplified impacts of extreme lighting points 
and use the full lighting data information such that it is suitable for describing lighting patterns 
for a large space (i.e., roadway segments). A high HFC standard deviation, representing a more 
diverse distribution of lighting level along a roadway segment, theoretically should decrease 
pedestrian visibility and cause higher crash risks because of the driver’s impaired vision and 
extended reaction time. The association between the HFC standard deviation and nighttime 
vehicle crashes has been proven in two previous studies (23, 24). By controlling the confounding 
effects of the HFC mean, this study (Table 2-4) quantified the impact of the HFC standard 
deviation on nighttime pedestrian crash risks. Given constant other factors (i.e., average lighting 
level), segments with a diverse lighting pattern (HFC standard deviation ≥ 0.52 fc) experience a 
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nighttime pedestrian crash risk that is 1.802 times as many as those with a uniform lighting 
pattern (HFC standard deviation < 0.52 fc). 

2.6.3 Other Factors 

The daytime pedestrian crash indicator (one or more daylight pedestrian crashes occurred 
at a given segment) was included in both models as an explanatory variable to capture the 
impacts of risk factors that contributed to both daytime and nighttime pedestrian crashes but not 
related to street lighting patterns. These factors are usually not included in the crash database, 
e.g., pedestrian exposure levels. The function of the daytime pedestrian crash indicator is similar 
to the night-to-day ratio widely used in lighting-safety studies (17, 19, 23, 24, 39, 40). The 
coefficients of the daytime pedestrian crash indicator in the models suggest a significantly 
positive relationship between nighttime pedestrian crash occurrence and daytime crash 
occurrence.  

A narrower shoulder width (< 9 ft) was positively related to nighttime pedestrian crash 
risk in the two models. This finding is consistent with the existing literature (41, 42). Wider 
shoulders provide more refuge space for pedestrians when they are facing collision risks; 
meanwhile, wider shoulders usually associate with high-level roadway classification with better 
safety design standards, such as better sight distance, traffic controls, and geometric features.  

Curve presence was significantly and negatively associated with nighttime pedestrian 
crash risk. Fewer pedestrians cross the road at curves than at straight segments, given that driver 
sight distance is much shorter at curves. Meanwhile, motorists tend to decrease their speed when 
operating through curves. Less exposure together with slower vehicle speed contributes to lower 
nighttime pedestrian crash risk. This finding aligns with existing studies that fewer nighttime 
pedestrian crashes occur at curves (11, 43). 

Access points introduce conflicts between turning vehicles and pedestrians crossing 
driveways or side streets along a roadway segment. More access points imply higher crash risks 
for pedestrians. The two models indicate that if a segment has more than 12 access points, the 
relative risk of nighttime pedestrian crashes increases significantly. With AADT as the measure 
of vehicle traffic exposure, the two models indicate that if AADT is higher than 6,200 per lane, 
the relative risk of nighttime pedestrian crashes tends to significantly increase.  

2.7 Conclusions 

This study investigated the safety effects of illuminance photometric criteria (HFC mean 
as an indicator of average lighting level and HFC standard deviation as an indicator of lighting 
uniformity) on nighttime pedestrian crash occurrence on roadway segments that were overlooked 
in previous studies. The matched case-control method successfully decoupled the correlation 
between the HFC mean and standard deviation, which resulted in counterintuitive findings in 
previous studies. Significant CMFs were developed to quantify the safety effects of the two 
photometric criteria. For average lighting level, taking the low HFC mean (<0.2 fc) as the 
baseline, the CMFs for medium [0.2 fc, 0.5 fc], medium-high (0.5 fc, 1.0 fc], and high (>1.0 fc) 
illuminance means are 0.225, 0.188, and 0.145, respectively. For lighting uniformity, compared 
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to low HFC standard deviation (<0.52 fc), the CMF for high illuminance standard deviation (≥ 
0.52 fc) is 1.803. The CMFs can be used in nighttime pedestrian safety management and street 
lighting assessment.  

Some limitations exist in this study and should be addressed in further studies. First, this 
study considered horizontal illuminance only. Due to lack of data, vertical illuminance, an 
important photometric measure related to pedestrian safety (44), was not included in the models. 
The CUTR team is expanding its lighting data collection efforts in Florida. Vertical illuminance 
data collection will be included in follow-up tasks, and the data will be used to address the safety 
effects of vertical illuminance for pedestrians in future studies. Second, existing photometric 
criteria (mean and standard deviation) are not ideal photometric measures and may not perfectly 
capture the “true” spatial relationship of lighting patterns that influence driver vision (21). New 
photometric measures are needed to encapsulate and fully account for the spatial relationship 
among lighting data points.  
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Chapter 3: Safety Effectiveness of  
LED Lighting Technology 

3.1 Introduction 

As oil and gas reserves decrease and the demand for energy increases, energy conservation 
is an urgent priority. The use of energy-efficient technology is necessary in roadway lighting to 
mitigate the effects of the energy crisis. Light-emitting diodes (LEDs) are fourth-generation light 
sources developed as an energy-efficient alternative to traditional street lighting, such as high-
pressure sodium (HPS). As shown in Figure 3-1, LED street lights are designed to keep streets 
and roads well-illuminated by directing the output light towards specific locations. By switching 
to LED streetlights, cities are able to reduce maintenance, energy cost, glare, and loss of light. 
Although LEDs have a higher installation cost than HPS light sources and generally provide 
inferior luminous efficacy, continuous development in the capacity of LEDs is anticipated in the 
near future. Assuming an annual usage of 4,000 hours, the estimated average lifetime of LEDs is 
10+ years; metal halide lamps have a shelf life of approximately 5.5 years. LED light sources can 
be switched on/off immediately, but it takes a long time for metal halide lamps to reach an ideal 
functioning temperature. Moreover, LEDs will eliminate the problem of hot spots on pavement, 
as observed with the use of metal halide street lights, because LEDS provide a uniform 
distribution of light. Table 3-1 summarizes the advantages of LED technologies for roadway 
illumination. 

 
Figure 3-1. Comparison of HPS (left) and LED (right) lighting technologies  

(Source: ADOT LED Lighting Pilot Study) 
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Table 3-1. Summary of Advantages and Disadvantages of LED Street Lights 
Advantages 

Energy Efficiency 

• LEDs can lead to reduction in energy consumption by as much as 80%. 
• LEDs led to an annual saving of $6 million in energy costs in Toronto 
• Use of solar-powered LEDs can be an environmentally-friendly illumination 

solution. 
Long Service Life • Average life of LED street lamps is ~ 50,000 hours, double that of HPS. 

Color Quality 

• Most LEDs have CCTs often above 5,000K and a cool bluish-white 
appearance. 

• LEDs have a range of 85–90 on the color rendering index (CRI). 
• The white light produced by LEDs can lead to accurate rendering of an 

object’s actual color. 

Mesopic Vision 

• The higher blue content of the LED light spectrum can render LEDs brighter 
than conventional light sources at the same lumen output. 

• The perceived lighting level of LEDs may not be fully represented by the 
conventional lumen and surface-level foot-candle measurements. 

Lack of Warm-up 
Time 

• LEDs can turn on/off instantly to full brightness without re-strike time. 
• The instant response speed of LEDs can turn on/off LEDs immediately 

according to environmental changes. 
Compact Size • Due to their compact size, LEDs allow flexibility in their form and design. 

Directional Light • LEDs enable more optical control. 
• LEDs can be designed to emit light in a specific direction. 

Reduced Light 
Pollution 

• LEDs can be designed to focus light on a preferred location. 
• LEDs can result in less light pollution and light trespass to adjacent areas. 
• LEDs can reduce over-illumination and glare to improve traffic safety for 

drivers and pedestrians alike. 

Environmental 
Benefits 

• LEDs are free of toxic materials such as mercury. 
• LEDs are free of heavy metals such as lead. 
• LEDs do not produce ultraviolet and infrared light. 

Dimmable 
Capabilities 

• LEDs provide more advantages in dimming over mercury vapor, metal halide, 
and HPS lamps. 

Breakage and 
Vibration 
Resistance 

• LEDs do not have a filament, arc tube, or fragile glass components. 
• LEDs offer a more robust light source and are more resistant to breakage and 

vibration. 
Luminous 
Efficacy 

• The luminous efficacy of LED street lights is not yet superior to conventional 
street lamps. 

Heat Conversion 
Rate 

• LEDs have a higher rate of power-to-heat conversion compared to 
conventional streetlights. 

• High-power LED chips generally transform ~ 80% of input power into heat. 

Installation Cost 

• LEDs currently require significantly higher initial installation costs compared 
to conventional streetlights. 

• LEDs currently require higher replacement costs compared to conventional 
street lights. 

Use of LED Array • The use of LED module arrays has a chance of component failure that 
increases with the increasing number of LED chips used. 

The existing SPFs and CMFs for lighting levels do not distinguish LED technology and 
traditional technologies such as HPS in safety analyses. As more and more road corridors have 
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been upgraded to LED systems in Florida and nationwide recently, engineers and managers need 
to assess the safety performance of LED technology that has different vision characteristics from 
HPS. The SPFs and CMFs developed in the prototype were based primarily on HPS lighting data 
and cannot capture the safety characteristics of LED lighting. Only one previous study (5) 
explored the impacts of LED upgrade on nighttime crashes. It is needed to develop or calibrate 
CMFs for LED lighting based on FDOT District LED upgrade projects conducted in the past 
decade. The enhanced computer tools in Phase II will integrate the CMFs for LED lighting and 
provide a function to stratify stakeholder needs in assessing the safety performance/benefits of 
LED lighting projects. 

This study focused on the following objectives:  

• Address the safety effectiveness of LED lighting technologies to preventing nighttime 
crashes. 

• Evaluate the visibility performance of LED colors in terms of human’s detection 
distance. 

3.2 Experiment Design 

The research team collected a 2018 inventory of LED lighting poles on major corridors in 
the Tampa Bay area, as shown in Figure 3-2, from FDOT District 7. The inventory provides the 
location information and lamp types (HPS, LED, or unknown) for each lighting pole. However, 
it does not include the starting date of LED poles, and it impossible to identify the before (HPS) 
and after (LED) periods from the inventory. Thus, this study could not apply the before-after 
study to compare nighttime crash frequencies before and after upgrading HPS to LED at the 
same sites. Alternatively, a cross-sectional study, which compares nighttime crash frequencies 
between two site groups (with and without LEDs) during the same time frame, was used in this 
study.  
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Figure 3-2. LED and HPS lighting poles in Tampa Bay area 
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3.3 Data Preparation 

The procedure for data collection and processing is given in Figure 3-3.  

Step-1: Split Road Segments by Traffic Signals

Step-2: Identify Lamp Types for each Segment

Step-3: Match RCI Data to each Segment

Step-4: Match Crash Data to each Segment

Step-5: Develop Statistical Models

 Retrieve roadway segments and 
traffic signals from the FDOT RCI 
database

 Split segments by traffic signals
 Drop any splatted segments <0.1 

miles
 Finally, 749 segments were 

produced 

 Match lighting poles to each 
segments

 If a segment contains 100% LEDs, 
it is defined as an LED segment

 If a segment contains 100% HPS, 
it is defined as a HSP segment

 Drop other segments
 Finally, 43 LED segments and 331 

HPS segments were produced

 Calculate weighted average values 
for 
 AADT and truck facts (2018 

and 2019)
 Median width
 Number of lanes
 Shoulder width
 Speed limit

 Calculate density (numbers per 
mile) for
 Median opennings

 Retrieve crash data from FDOT 
State Safety Office Geographic 
Information System (SSOGIS)

 Identify nighttime crashes
 Lighting condition = Dark –

lighted, Dark – not lighted, 
Dark – unknown lighting

 Match nighttime crashes to each 
segment 

 

Figure 3-3. Procedure for data collection in LED study 
Data Sources  

Three data sources were used in this study. The inventory of FDOT D7 lighting poles in 
2018 was provided by FDOT District 7 and included locations and lamp types of street lighting 
poles. The traffic and geometric information were retrieved from the FDOT Roadway 
Characteristics Inventory (RCI) database, and historical crash data were obtained from the FDOT 
State Safety Office Geographic Information System (SSOGIS). 

RCI Data Matching Method 

RCI data (traffic and geometries) were matched to each segment. For statistical modeling, 
the Highway Safety Manual (45) advises that segments need to be divided into homogenous 
sections in which roadway characteristics are similar. However, homogenous segmentation may 
result in very short segments and lead to a zero-inflated issue (46). To avoid this, the research 
team adopted the aggregation method (aggregating roadway characteristics for a long segment). 
The two methods are explained in Figure 3-4. In addition, any segments shorter than 0.1 miles 
were removed from the dataset to avoid bias estimation (47). 
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1 2 3 4

Value 1 Value 2 Value 3

Value 1 Value 2

Attribute 1 – 3 values

Attribute 2 – 2 values

Output: 4 segments 
with homogenous 
attributes 1 and 2

Value 1 Value 2 Value 3
Attribute 1 – 3 values

Output: 1 segment with 
two weighted average 

attributes

Length 1 Length 2 Length 3

Weighted Average Attribute =  
Valuei × Lengthi

Lengthi
 

    
  

  

  

   

 

Figure 3-4. RCI data matching methods 

Analysis Time Frame  

The inventory of lighting poles does not include information on activation date for LED 
lighting poles; the only information is LED poles in activated status in 2018. To minimize 
identification errors for lamp types, the analysis time frame was adopted as two years—2018 and 
2019. It is assumed that FDOT did not change the lamp types (LED and HPS) in those two years. 
Nighttime crash frequencies were counted for the two years for each segment, and traffic 
information (AADT and truck percentage) were matched by the two years for each segment; 
their yearly weighted averages were calculated using the method described in Figure 3-4.  

A final dataset containing 418 segments was produced for statistical modeling. The descriptive 
statistics of the dataset are shown in Table 3-2. 

. 
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Table 3-2. Descriptive Statistics of Collected Data for LED Study (obs = 418) 
Variable Mean Std Min Max 

Nighttime crashes, 2018 and 2019 14.978 16.036 0 151 
LED segment (1 = yes, 0 = no) 0.103 0.304 0 1 
Segment length (mi) 0.611 0.693 0.1 5.575 
Yearly weighted average AADT, 2018 and 2019 76520.09 38633.34 1300 273200 
Yearly weighted average truck factor, 2018 and 2020 9.096 4.550 3.2 27.7 
Weighted lane width (ft) 11.778 0.781 10 16 
Weighted lane width (ft) 23.944 13.257 0 117.727 
Weighted speed limit (mph) 45.136 6.265 30 62 
Density of unsignalized intersections 10.638 7.472 0 43.716 

3.4 Model Development 

Nighttime crashes are a typical count data with overdispersion (variance > mean). The 
negative binomial (NB) model was used to account for over-dispersion in count data. The model 
can be written as (48): 
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where Pr(yi) is the probability of segment i having yi crashes occurring per a given period (e.g., 
one year); Γ(·) is a gamma function; λi is the expected number of crashes per period at segment i 
as a function of explanatory variables; α is the over-dispersion parameter. The log-linear form of 
λi can be expressed as 

 [ ] )+(== iiii εβXEXPyEλ         (6) 

where EXP(εi) represents a Gamma-distributed disturbance term with mean 1 and variance α. Xi 
denotes the vector of explanatory variables; and β is the vector of coefficients. 

CMF is the comparison of crash frequencies with and without a trament. For a binary 
variable (𝑥𝑥𝑘𝑘:1 – with treatment, 0 – without treatment), its CMF can be written as: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

= 𝑒𝑒𝛽𝛽𝑘𝑘∙1+∑𝜷𝜷𝒊𝒊∙𝑿𝑿𝒊𝒊

𝑒𝑒𝛽𝛽𝑘𝑘∙0+∑𝜷𝜷𝒊𝒊∙𝑿𝑿𝒊𝒊
= 𝑒𝑒𝛽𝛽𝑘𝑘    

 (7) 

where 𝛽𝛽𝑘𝑘 is the coefficient for 𝑥𝑥𝑘𝑘; 𝒙𝒙𝒊𝒊 and 𝜷𝜷𝒊𝒊 are other independent variables and associated 
coefficients, assuming they are constant over sites.  

The statistical package STATA 16 was used to estimate the NB model for nighttime 
crashes. A step-wise method was used to select independent variables. Any variables with a 
significance higher than 90% were included in the model. The fitted model is shown in Table 
3-3. 
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Table 3-3. Fitted Negative Binominal Model for LED Study 

 
Coefficient S.E. z-

statistics 
p-

value [95% conf. interval] 

Constant -5.904 0.633 -9.32 0 -7.145 -4.662 
Logarithm of yearly weighted 
average AADT 0.777 0.056 13.77 0 0.666 0.887 

Logarithm of segment length 0.546 0.044 12.41 0 0.460 0.632 
Density of unsignalized intersections 0.026 0.005 5.1 0 0.016 0.036 
LED corridor indicator  
(1 = LED, 0 = HPS) -0.191 0.115 -1.66 0.098 -0.417 0.035 

alpha (overdispersion factor) 0.394 0.034   0.333 0.467 
Model Statistics 
Number of observations 416 
Log likelihood -1418.768 
Pseudo R2 0.0837 
Degree of freedom 6 
AIC 2849.536 
BIC 2873.72 

3.5 Conclusions 

The sign of LED segment indicator is a negative value and significant at a confidence 
level of 91%. It can be concluded that, compared to HPS, LED tends to decrease nighttime crash 
frequency on a roadway segment. The CMF for LED is derived from Eq. 7 as  

𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑒𝑒−0.191 = 0.83  

If the lighting system on a roadway segment is upgraded from HPS to LED, nighttime 
crash frequency is more likely to be reduced by 17% (=1-0.83*100%). This result indicates that 
LED not only introduces economic benefits (i.e., long service life and energy saving) but also 
brings safety benefits. The safety benefits of LED lighting is evidenced by its better performance 
for driver vision; the higher blue content of the LED light spectrum can render LEDs brighter 
than conventional light sources at the same lumen output. 

This study did not include lighting pattern parameters (i.e., horizontal illuminance) due to 
the absence of lighting data on the study corridors in 2018. Thus, comparison of LED and HPS 
could not exclude the influence from different lighting patterns. The CMF can explain the 
benefits of upgrading projects in FDOT District 7, but it may be biased to interpret the safety 
improvement from HPS to LED with the same lighting photometric patterns (i.e., same lighting 
level or same uniformity). A future study will collect enough data to address this issue.  
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Chapter 4: Upgrading Lighting Uniformity  
Diagnosis Algorithm 

4.1 Problem Statement 

Uniformity is a measurement of how equally light is distributed on a road. A good 
uniformity design improves both visibility and visual comfort for drivers (6). Many 
transportation agencies have adopted two illuminance ratios—max-min ratio (MMR) and 
average-min ratio (AMR)—to measure roadway lighting uniformity: 

 
MMR =

HFCMax
HFCmin

 

AMR =
HFCAvg
HFCmin

 
(5) 

FDOT’s Florida Design Manual establishes a requirement of 4:1 or lower uniformity ratio for 
AMR and 10:1 or lower uniformity ratio for MMR, as shown in Table 4-1.  

Table 4-1. FDOT Conventional Roadway Lighting Requirements 

Road Classification Illumination Level 
Average Initial HFC 

Uniformity Ratios 
Avg/ Min Max/Min 

Interstates, Expressways, Freeways, 
Major Arterials 1.5 4:1 or less 10:1 or less 

All other roadways 1.0 4:1 or less 10:1 or less 
Pedestrian ways and bicycle lanes 2.5 4:1 or less 10:1 or less 

In practice, simply calculating the MMR and AMR for a whole segment may introduce 
extremely high ratio values and may not accurately capture the “true” pattern features 
influencing driver vision on a roadway corridor. For example, as shown in Figure 4-1, the 
uniformity for the whole roadway segment is the ratio of the maximum value (1.5 fc) over the 
minimum value (0.1 fc), equal to 15. The maximum illuminance point, however, is far from the 
minimum illuminance point. The change from minimum illuminance to maximum illuminance 
does not influence driver vision; the true pattern that deteriorates the vision is the change from a 
low-lit zone (0.1 fc) to a high-lit zone (0.9 fc) in successive subsections along the travel route.  

0.1 0.1 0.1 0.1 0.4 1.0 0.5 0.6 0.7 1.0 1.3 1.5

0.1 0.1 0.9 0.6 0.8 0.8 1.2 1.40.6

min max
true pattern  

Figure 4-1. Example of ratio-based uniformity calculation for a whole roadway segment 
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4.2 Sliding Window Algorithm 

This study developed an sliding window diagnosis algorithm to better address the 
uniformity pattern along a corridor. When driving along a road segment, a driver needs to 
continuously scan the front to detect any potential risk. The field of driver vision is a function of 
travel speed, as shown in Figure 4-2. 

 

Figure 4-2. Field vision and speed (49) 

In night driving, driver vision is influenced by the lighting pattern within the field of 
vision rather than the whole segment. Thus, the calculation of uniformity should be applied on a 
window that covers the field of vision rather than the whole segment.  

Figure 4-3 shows the concept of the sliding window algorithm, which creates a series of 
windows along a road segment from the beginning of segment to the end of segment in small 
steps. The windows, which are a rectangle with parameterized dimension (length and width), 
represent the fields that influence driver vision at each moment when driving on the segment. 
The uniformity measures, MMR and AMR, are calculated for each window. The windows may 
be overlapped, as the move step is usually smaller than the window length. The uniformity 
measures for the overlapped area adopt the “worst case”—the maximum uniformity measures of 
the overlapped windows. 

1st
2nd

3rd
Nth

Moving Direction
(N-1)th

Sliding Window

Moving Step

 Overlapped area by Windows 1, 2, 
and 3

 The area uniformity is labeled as the 
worst uniformity of the 3 windows  

Figure 4-3. Concept of sliding window algorithm for uniformity diagnosis 
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Finally, the areas with an issued uniformity (does not satisfy the DOT standards) are 
labeled. Percentage of issued uniformity, weighted average uniformity, and worst uniformity 
performance are calculated for each section. 

The detailed algorithm is described in Figure 4-4 and Figure 4-5. The terms used in the 
algorithm are as follows: 

• Window – a rectangle covers a driver’s vision field when driving; the window is the unit 
for uniformity calculation, and the window dimension can be configured: 
- Length – determined by stopping sight distance, which is a function of speed; 600 ft 

is default value. 
- Width – for undivided roads, width suggested to cover all through lanes or, 

otherwise, through lanes on one side. 

• Moving step – distance between two adjacent windows, representing the uniformity scan 
resolution; a smaller moving step may introduce additional processing time; the default 
value is 100 ft. 

• Slice – area overlapped by sliding windows; its uniformity is labeled by the worst 
uniformity measure of the overlapped windows.  

• Section – aggregation of neighboring slices that have similar uniformity; length of 
section should satisfy minimum length; final statistics calculated based on sections. 
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Start

Sliding Window 
Generation

 Create a window with the given window length from 
the beginning of a road segment

 Moving the window by the given moving step 
 Repeat moving until reach the ending of the segment
 A series of sliding windows are generated 

Measure Calculation for 
Windows Calculate university measures for each window

Parameter Specification

 Uniformity measure (max/min, avg/min, or others) and 
categories

 Window length
 Moving step
 Minimum section length

Slice Generation Split the segment into slices that have an uniform length 
of the moving step

Measure Calculation for 
Slices

 Identify the windows overlapped with each slice
 Adopt the worst window as the uniformity measure of 

the slice
 Label slices based on the given uniformity category
 Set all neighboring slice-pair as unblocked

Hierarchical Clustering

Output
 Calculate uniformity measure for each section
 Compare photometric statistics of each section with 

DOT standards
 Output diagnosis results (meet or not) for each section

End

 Merge similar neighboring slices into sections
 The final sections satisfy
 All neighboring sections have different uniformity 

category label 
 All sections are equal to or longer than the 

minimum length

 

Figure 4-4. Sliding window algorithm for uniformity diagnosis 
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Pair Identification
 Calculate the difference between neighboring slices 
 Identify the “closest” slice-pair that two unblocked 

neighboring sections with the least difference in 
uniformity measures.

Satisfy Merge 
Criterion?

 If the two neighboring slices have the same label, then 
merge

 If the two neighboring slices have different label and 
either of them cannot satisfy the minimum length, then 
merge

Satisfy Stopping 
Criterion?

 Each section length is greater than the minimum 
length, and

 All neighboring sections has different labels

Merge

Yes

 Combine the neighboring slices as one section
 Recalculate uniformity measure for the combined 

section

Yes

Set the Pair as 
“Blocked”

No

Slices with Calculated 
Uniformity Measure and 

Label 

Final Sections

 

Figure 4-5. Hierarchical clustering for slice merging 
 

4.3 Example of Sliding Window Algorithm 

Lighting data were collected on a 0.5-mile segment (College Ave between US-41 and 7th St SE, 
Ruskin, FL). The segment layout and lighting data are shown in Figure 4-6. Lighting statistics 
are shown in Table 4-2. 
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Figure 4-6. Lighting data for 0.5-mile segment 

Table 4-2. Horizontal Illuminance Statistics for Whole Segment,  
College Avenue in Ruskin, FL 

LT Points Average Max Min MMR AMR 
1,106 0.56 fc 2.21 fc 0.1 fc 22.1 5.6 

This study applied the sliding window diagnosis algorithm using the following 
parameters: 

• Uniformity measure: MMR (max-min ratio) 
• Window Length: 600 ft (0.114 mi) 
• Window Width: all through lanes on both sides 
• Moving Step: 100 ft (0.019 mi) 
• Minimum Length of Final Sections: 0.1 mi 
• Uniformity Categories (category for demonstration only):  

- 1 – MMR ≤ 10 (meets FDOT standard) 
- 2 – 10<MMR≤20 (does not meet FDOT standard) 
- 3 – 20<MMR≤30 (significantly does not meet FDOT standard)  

- 4 – MMR> 30 (extremely does not meet FDOT standard) 
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Step 1: Generate windows and calculate MMR. A series of window was created along the 
segment in a moving step of 0.114 miles. MMR was calculated for each window. The sliding 
windows and uniformity measures are shown in Table 4-3.  

Table 4-3. Sliding Windows and Uniformity Measures 
Window BMP EMP Average Max Min MMR 

1 0 0.114 0.55 1.69 0.13 12.97 
2 0.019 0.133 0.56 1.69 0.17 9.94 
3 0.038 0.152 0.59 1.69 0.17 9.94 
4 0.057 0.17 0.51 1.62 0.14 11.36 
5 0.076 0.189 0.45 1.62 0.13 12.27 
6 0.095 0.208 0.41 1.34 0.13 10.14 
7 0.114 0.227 0.50 1.81 0.13 13.68 
8 0.133 0.246 0.60 1.94 0.13 14.65 
9 0.152 0.265 0.58 1.94 0.13 14.65 
10 0.17 0.284 0.58 1.94 0.13 14.65 
11 0.189 0.303 0.60 1.94 0.13 14.42 
12 0.208 0.322 0.70 2.21 0.10 21.39 
13 0.227 0.341 0.65 2.21 0.10 21.39 
14 0.246 0.36 0.57 2.21 0.10 21.39 
15 0.265 0.379 0.53 2.21 0.10 21.39 
16 0.284 0.398 0.51 2.21 0.10 21.39 
17 0.303 0.417 0.59 2.21 0.10 21.39 
18 0.322 0.436 0.57 1.72 0.10 16.64 
19 0.341 0.455 0.59 1.72 0.12 14.05 
20 0.36 0.473 0.63 1.72 0.12 14.05 
21 0.379 0.492 0.61 1.72 0.13 13.66 
22 0.386 0.5 0.62 1.72 0.14 12.60 

Step 2: Generate slices. A slice represents a small area in which multiple windows are 
overlapped; the slice length is the moving step (0.019 miles). For example, Slice 4 (0.057 – 
0.076) is the overlapping area for Window 1 (0 – 0.114), Window 2 (0.019 – 0.133), Window 3 
(0.038 – 0.152), and Window 4 (0.057 – 0.17). As Window 1 has the worst uniformity (MMR = 
12.97), the uniformity for Slice 4 is labeled as 12.97. The slices and associated uniformity 
measures are given in Table 4-4. 
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Table 4-4. Slice Generation 

Slice BMP EMP MMR 
1 0 0.019 12.97 
2 0.019 0.038 12.97 
3 0.038 0.057 12.97 
4 0.057 0.076 12.97 
5 0.076 0.095 12.97 
6 0.095 0.114 12.97 
7 0.114 0.133 13.68 
8 0.133 0.152 14.65 
9 0.152 0.17 14.65 

10 0.17 0.189 14.65 
11 0.189 0.208 14.65 
12 0.208 0.227 21.39 
13 0.227 0.246 21.39 
14 0.246 0.265 21.39 
15 0.265 0.284 21.39 
16 0.284 0.303 21.39 
17 0.303 0.322 21.39 
18 0.322 0.341 21.39 
19 0.341 0.36 21.39 
20 0.36 0.379 21.39 
21 0.379 0.398 21.39 
22 0.398 0.417 21.39 
23 0.417 0.436 16.64 
24 0.436 0.455 14.05 
25 0.455 0.473 14.05 
26 0.473 0.492 13.66 
27 0.492 0.5 12.60 

 
Step 2: Merge slices. Table 4-5 shows the sections that merge neighboring slices with the same 
MMR values. The MMR category is assigned to each section. Compared to the MMR for the 
whole segment (MMR=22.1), the sliding window algorithm gives more detailed information on 
the uniformity pattern. Table 4-5 indicates that uniformity of all sections does not meet the 
FDOT standard; however, Section 4 (0.208-0.417) has the worst uniformity (MMR=21.39). The 
weighted average MMR for this segment is calculated as  
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑖𝑖

∑𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑖𝑖
= 17.01 

 

The diagnosis results are displayed in Figure 4-7. 
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Table 4-5. Merge Slices by Value to Sections 
Section BMP EMP MMR Category 

1 0 0.114 12.97 2 
2 0.114 0.133 13.68 2 
3 0.133 0.208 14.65 2 
4 0.208 0.417 21.39 3 
5 0.417 0.436 16.64 2 
6 0.436 0.473 14.05 2 
7 0.473 0.492 13.66 2 
8 0.492 0.5 12.60 2 

 
Figure 4-7. Display of uniformity diagnosis results 

Step 3: Hierarchical Clustering (Optional). The sections can be clustered based on the 
uniformity category. For example, Sections 1, 2, and 3 in Table 4-5 have the same category 
(Category 2) and can be merged into one section. Sections 5–8 in 4-4 also have the same 
category (Category 2). However, the total length of the four sections is 0.083 miles, less than the 
minimum length for the final sections (0.1 miles). Thus, the four sections were combined with 
Section 4 in Table 4-5. The final sections are shown in Table 4-6.  

Table 4-6. Slice Merge by Category using Hierarchical Clustering 
Section BMP EMP Length Category 

1 0 0.208 0.208 2 
2 0.208 0.5 0.292 3 
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Chapter 5: Software Development 
The computer tools developed in Phase I were built on an Esri Web-GIS platform and a 

map was integrated for data visualization, such as roadway inventory, heatmaps, analysis results, 
and figures. Based on the prototype developed in Phase I, this study recoded the analysis engine 
to integrate the uniformity of a diagnosis algorithm developed in this study and to optimize the 
speed of the existing algorithms. The analysis engine is coded as a pure Python package and can 
run as a stand-alone application or a Python toolbox in ArcGIS Pro. The system architecture of 
analysis engine is shown in Figure 5-1. 

Data Connection

Diagnosis

Safety Performance 
Function

RCI

REST API

Flat Files (csv)

SQL Lite

 Lighting Inventory
 RCI Data
 Crash

Optimized Hierarchical Clustering 
Algorithm

Sliding Window Algorithm

Predict Nighttime Crashes

Estimate Nighttime Crash Reduction 
due to Lighting Improvement

Homogenous Segmentation 

Weighted Average

Module Function Data

 

Figure 5-1. System architecture of analysis engine 
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The major modules include: 

• Data Connection – provides a logic layer to separate analysis functions from data 
sources. The module can access lighting data, roadway characteristics inventory (RCI) 
data, and crash data from different sources, such as web service (REST API), local 
database (SQLLite), or flat text files. The retrieved data will be provided to other 
modules. 

• Diagnosis – provides two major diagnosis functions—(1) hierarchical clustering 
algorithm for lighting level diagnosis, and (2) sliding window algorithm for uniformity 
diagnosis. 

• Safety Performance Function (SPF) – predicts nighttime crashes based on lighting data, 
geometries, and traffic data for a segment; can also estimate the benefits (crash reduction) 
due to a lighting improvement. 

• RCI – processes geometry and traffic data obtained from the FDOT RCI database for 
SPFs; provides two major functions—s: (1) homogenous segmentation and (2) weighted 
average. The detailed information of the two functions is given in Figure 3-4.   

The study optimized the algorithms to improve the running speed. Figure 5-2 shows the 
comparison of applying the hierarchical clustering diagnosis algorithm on the same segment 
before and after optimization. With the optimization, the running time is reduced from 504 
seconds to 53 seconds. The optimized algorithm can be used on a big-scale network. 

 

Figure 5-2. Comparison of running time for applying hierarchical clustering diagnosis  
on Rickenbacker Drive, Ruskin, FL 
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Chapter 6: Summary and Conclusions 
6.1 Summary and Conclusions 

Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and 
security for multimodal road users (motorists, pedestrians, cyclists, transit passengers). To cost-
effectively maintain a roadway lighting system, key tasks in infrastructure management include 
periodically measuring roadway lighting levels, diagnosing lighting performance based on 
collected data, and providing decision-making support for maintenance and improvement.  

The ALMS developed by CUTR provides a low-cost and time-effective solution for 
collecting high-resolution lighting data for a big-scale roadway network. A previous CTEDD-
study, “Development of Automated Roadway Lighting Diagnosis Tools for Nighttime Traffic 
Safety Improvement, Phase I,” developed improved an analysis tool to diagnosis lighting 
patterns and predict nighttime crash risks based on the big lighting data. This Phase II study 
enhanced the tool in terms of investigating the impacts of lighting patterns on nighttime 
pedestrian crashes, addressing the effectiveness of LED technologies, developing a sliding 
window algorithm for uniformity diagnosis, and recoding the analysis engine to integrate more 
functions and improving processing speed.  

Major conclusions from this study include the following: 

• Both the mean of horizontal illuminance (representing average lighting level) and the 
standard deviation of horizontal illuminance (representing uniformity) significantly 
impact nighttime pedestrian crashes on roadway segments. For average lighting level, 
taking the low HFC mean (<0.2 fc) as the baseline, the CMFs for medium [0.2 fc, 0.5 fc], 
medium-high (0.5 fc, 1.0 fc], and high (>1.0 fc) illuminance means are 0.225, 0.188, and 
0.145, respectively. For lighting uniformity, compared to low HFC standard deviation 
(<0.52 fc), the CMF for high illuminance standard deviation (≥ 0.52 fc) is 1.803.  

• Upgrading the conventional lighting system (HPS technologies) to LED lighting tends to 
decrease nighttime crash frequency. The CMF for LED lighting upgrading is 0.83, which 
can be used to evaluate the benefits of roadway lighting upgrading projects in Florida. 

• Ratio-based uniformity measures (max-min ratio, average-min ratio) for the whole 
segment may introduce extremely high values and cannot capture the true lighting pattern 
influencing driver vision. The sliding window algorithm scans the lighting patterns along 
a segment and calculates the uniformity measures within a limited area covering a 
driver’s vision field. The algorithm can provide more reasonable and detailed diagnosis 
of lighting uniformity. 

• The recoded analysis engine contains more functions and greatly improves processing 
speed. The engine can be executed as a stand-alone application or can be integrated into 
ArcGIS Pro or the Web-GIS tool developed in Phase I. The improved processing speed 
allows applying the analysis to a big-scale roadway network.  
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6.2 Implementation 

The CUTR team is working with FDOT District 7 to collect and analyze lighting data on 
District-wide state roads under contract FDOT BDV25 762-30. As shown in Figure 6-1, the 
identified corridor segments within the district include: 

• 171 State Road segments with streetlights 
• 412 total centerline mileage is 412 miles 
• The total lane mileage is 1,926 miles. 

 

Figure 6-1. FDOT District 7 district-wide lighting data collection and analysis 

The analysis methods and engine developed in this study will be used to analyze the 
district-wide lighting data and provide decision-making support to FDOT for their roadway 
lighting management and maintenance.  
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