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Abstract

Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and
security for multimodal road users (motorists, pedestrians, cyclists, transit passengers). The
Advanced Lighting Measurement System (ALMS) developed by CUTR provides a low-cost and
effective solution for collecting high-resolution lighting data for a big-scale roadway network. A
previous CTEDD-study (Development of Automated Roadway Lighting Diagnosis Tools for
Nighttime Traffic Safety Improvement, Phase I) developed and improved an analysis tool to
diagnose lighting patterns and estimate nighttime crash risks based on big lighting data. This
Phase II project aimed to enhance the methods and tools developed in Phase I to investigate the
impacts of lighting patterns on nighttime pedestrian crashes, address the effectiveness of LED
technologies, develop a sliding window algorithm for uniformity diagnosis, and recode the
analysis engine to integrate more functions and improving processing speed.

The study adopted the matched case-control method, which can address the
critical issue in lighting data—the confounding effects between illuminance mean and standard
deviation—to investigate the impacts of lighting patterns on nighttime pedestrian crashes. Crash
Modification Factors (CMFs) for the mean of horizontal illuminance (representing average
lighting level) and the standard deviation of horizontal illuminance (representing uniformity)
were developed to quantify the impacts. The study also developed a Safety Performance
Function (SPF) for LED technologies based on Florida Department of Transportation (FDOT)
District 7 light pole inventory data. The SPF indicates that lighting upgrading projects (HPS to
LED) in Florida tend to decrease nighttime crash frequency by 17%. In addition, a sliding
window algorithm was developed to diagnose lighting uniformity by scanning the lighting
patterns along a segment and calculating the uniformity measures within a limited area covering
driver vision field. Compared to uniformity for the whole segment, the algorithm can provide
more reasonable and detailed diagnosis of lighting uniformity. In addition to developing new
models, the analysis engine was recoded to include more functions and improve processing
speed. The new analysis engine realizes the functions of connecting different data sources,
lighting diagnosis, nighttime crash prediction, and geometric and traffic data processing; with the
optimized codes, its process time is reduced by 90%.

The developed methods and tools are being applied in FDOT District 7’s district-wide
lighting collection and analysis task. The analysis results will provide decision-making support
for FDOT District 7 roadway lighting maintenance and nighttime safety management.
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Chapter 1: Introduction
1.1 Background

Nighttime crashes, particularly those that result in fatalities and injuries, are over-
represented on the U.S. highway system. Roadway lighting is a vital countermeasure to increase
visibility at night and provides clear safety benefits for multimodal users such as drivers,
motorcyclists, pedestrians, bicyclists, and transit-dependents. In 2019—-2020, the research team
developed a prototype of computer tools in a CTEDD-funded research project titled
“Development of Automated Roadway Lighting Diagnosis Tools for Nighttime Traffic Safety
Improvement.” The computer tools (http://its.cutr.usf.edu/lita), built on the Esri ArcGIS web-
GIS platform, provide core functions of data management, data analysis, and data visualization
for lighting analysis and safety management, as shown in Figure 1-1.

Conduct Identify
economic corridors
appraisal for with
project nighttime
selections safety issues
Estimate Diagnose
crash lighting
reduction patterns
Propose
lighting
maintenance
or upgrade
projects

Figure 1-1. Lighting analysis and nighttime safety management

However, the prototype of the computer tools still has some limitations:

o Safety analysis for vulnerable users — The prototype is used primarily for vehicular
nighttime crash analysis rather than vulnerable users. As nighttime crashes account for
almost 70% of pedestrian fatalities (2), vulnerable users (pedestrians and bicyclists) are a
major concern in nighttime safety management. Limited previous studies (3, 4)
investigated the impacts of street lighting patterns on nighttime pedestrian/bicyclist crash
risk; no implementable Crash Modification Factors (CMFs) of lighting patterns for
vulnerable users were identified from these previous studies. It is necessary to develop
CMFs for lighting patterns for vulnerable users based on ALMS data and integrate them
into the computer tools.


http://its.cutr.usf.edu/lita

e Safety analysis for LED lighting — The prototype does not distinguish LED technology
and traditional technologies such as High-Pressure Sodium (HPS) in safety analyses. As
more and more road corridors have been upgraded to LED systems in Florida and
nationwide recently, engineers and managers need to assess the safety performance of
LED technology, which has different vision characteristics from HPS. The SPFs and
CMFs developed in the prototype were based primarily on HPS lighting data and cannot
capture the safety characteristics of LED lighting. Only one previous study (35) explored
the impacts of LED upgrade on nighttime crashes. The proposed study needs to develop
or calibrate CMFs for LED lighting based on FDOT District LED upgrade projects
conducted in the past decade. The enhanced computer tools in Phase II will integrate the
CMFs for LED lighting and provide a function to stratify stakeholder needs in assessing
the safety performance/benefits of LED lighting projects.

e Functionality — The prototype provides an initial function of lighting pattern diagnosis, a
simple user interface, and non-optimized geoprocessing codes. It is necessary to enhance
these functions to provide an implementable product with full functionality.

1.2 Research Objectives

This project aimed to enhance the prototype of the Automated Roadway Lighting
Diagnosis Tools developed in Phase I and produce an implementable system at Technology
Readiness Level (TRL) Level 8: Technology Proven in Operational Environment. More
specifically, the research objectives are as follows:

e Develop roadway lighting safety analysis methods for pedestrians, who are major
concerns in nighttime safety.

e Develop safety analysis methods for LED bulbs that have different photometric
performance from traditional lighting technologies.

e Improve the roadway lighting diagnosis algorithms to recognize “unsafe” uniformity
patterns more effectively.

e Enhance the functionality of the lighting analysis platform developed in Phase I,
including optimal processing speed and include more functions.

e Implement the developed methods and tools for the FDOT District 7 district-wide
lighting measurement project.
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Chapter 2: Impacts of Lighting Patterns on
Nighttime Pedestrian Crashes

2.1 Introduction

Nighttime pedestrian crashes are a major concern in transportation safety management.
Fatality Analysis Reporting System (FARS) data indicate that 4,580 pedestrians were killed in
dark environments in the U.S. in 2019, accounting for 74% of pedestrian fatalities that year (2).
Among these, 72% occurred at midblock and 23% were intersection-related. Reduced visibility
at night is an inherent factor that increases the risk of vehicle-pedestrian collisions.

Driving is a visual effort, in that drivers continuously scan the surrounding environment
to identify potential risks. If an object (e.g., a pedestrian) presents on a route, the driver needs
sufficient time to detect the object and take action (e.g., braking and avoidance maneuvers) to
avoid a potential collision. Drivers detect pedestrians at night primarily as a result of luminance
contrast—the visual (luminance) difference between the pedestrian and the background (6).
Street lighting is an effective way to increase luminance contrast (visibility) of pedestrians at
night and to improve driver detection ability (7, 8). Existing studies have addressed the safety
effects of installing street lighting on pedestrian safety. Jensen (9) suggested that installing
roadway lighting can reduce pedestrian injuries by about 45% when the speed limit exceeds 50
km/h and 12% when the speed limit is less than 50 km/h. Siddiqui et al. (/0) found that roadway
lighting reduced pedestrian crash odds by 42% at midblock locations and 54% at intersections
compared to dark conditions with no lighting. Sullivan and Flannagan (//7) showed that lighting
improved pedestrian safety in three crash scenarios—curve, motorway, and corner. Nambisan et
al. (12) studied the impacts of lighting crosswalks and concluded that lighting enhances
pedestrian safety. Mohamed et al. (/3) found that the probability of fatal pedestrian crashes
increased when the roadway was not lighted rather than lighted. Olszewski et al. (/4) concluded
that, compared to daytime, nighttime pedestrian crashes increased 1.95 times with roadway
lighting and 4.08 times without roadway lighting at unsignalized crosswalks. Patella et al. (15)
found that vehicle average speed decreased by 19.3% at crosswalks in illuminated conditions and
confirmed the positive effects of roadway lighting on nighttime pedestrian safety.

Despite these insightful developments, the effects of lighting photometric patterns (i.e.,
average lighting and lighting uniformity) on nighttime pedestrian crashes remain unclear.
Intuitively, drivers can easily detect pedestrians in a bright environment and have more
opportunities to avoid collisions. When driving in uneven lighting conditions (i.e., from a dark
environment to a bright visual field or vice versa), drivers need additional time to adapt to the
new lighting conditions, and their visual functions may be degraded during the adaption, which
increases crash risks. A well-designed street lighting pattern (bright and uniform) can increase
pedestrian luminance contrast against the roadway surface and aid human eyes in adapting to a
changing lighting environment better than headlights alone. Several previous studies have
addressed the safety effects of street lighting patterns on vehicle crashes and developed crash
modification factors (CMFs) (16-21). However, little effort has been made to explore the impact
of lighting patterns on nighttime pedestrian crashes. Zhou and Hsu (22) reported that nighttime
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pedestrian crash frequency at low lighting level segments was much higher than at high lighting
level segments. Wei et al. (/8) found that horizontal illuminance of 0.9 foot-candle (fc) or higher
can reduce the likelihood of fatal and serious pedestrian injury by 10.7% at signalized
intersections. Nabavi Niaki et al. (3) concluded that nighttime pedestrian crash frequency
increased with average lighting conditions and attributed this counterintuitive finding to driver
safety compensation in the dark environment and selection bias (traffic agencies tend to improve
roadway lighting at sites that experience more crashes).

Two photometric parameters are widely used in the roadway lighting design (6). Average
horizontal illuminance—the average number of lumens that fall onto a unit of pavement surface
either in foot-candle (fc, lumens per ft?) or lux (Ix, lumens per m?)—measures the average
lighting level on a roadway segment. [lluminance ratio—the maximum illuminance divided by
the minimum illuminance (max-to-min ratio) or the average illuminance divided by the
minimum illuminance (mean-to-min ratio)—represents the uniformity of street lighting patterns
along a segment. It has been argued that the ratio-based uniformity measures may not accurately
capture the “true” lighting patterns that influence driver vision in large-scale lighting analysis
(i.e., roadway corridor) because of the potential issue of spatially-unrelated extreme lighting
points (21, 23, 24). To overcome this disadvantage of ratio-based uniformity criteria, two
previous studies (23, 24) adopted the standard deviation of horizontal illuminance as the
uniformity measure, arguing that it uses the information of all lighting points and thus prevents
the issue of spatially-unrelated extreme lighting points. However, as Yang et al. (23) indicated,
the standard deviation of illuminance is strongly and positively correlated to the illuminance
mean, especially in a low mean range, which may cause a collinearity issue such that the model
cannot distinguish the safety effects of the mean and the standard deviation (25). This correlation
issue is a significant limitation in a previous study conducted by Nabavi Niaki et al. (3) that
ignored the counteracting effects of the standard deviation of illuminance on the illuminance
mean and might lead to the counterintuitive conclusion—a high illuminance mean
(accompanying a high standard deviation) is associated with a high pedestrian crash frequency
(probably caused by the high standard deviation [poor uniformity]) at intersections.

2.2 Research Objectives

The literature review indicated several research gaps that exist in nighttime pedestrian
safety studies—1) due to lack of lighting data, few studies explored the effects of street lighting
patterns (brightness and uniformity) on nighttime pedestrian crashes, and no CMFs were
developed; 2) counterintuitive findings of the illuminance mean were observed, probably due to
ignoring the counteracting effects of the standard deviation of illuminance (3); and 3) the safety
effects of illuminance patterns for pedestrians on midblock segments that experience a sizable
portion of nighttime pedestrian crashes were not well-addressed.

Motivated by these research gaps, this study quantified the safety effects of illuminance
photometry on nighttime pedestrian crash frequency at midblock. Matched case-control studies
were applied to address the critical issues in previous studies—the confounding effects of the
standard deviation of illuminance on illuminance mean and spatially-unrelated extreme values
for ratio-based uniformity measures. Based on the modeling results, reliable and implementable
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CMFs of lighting photometric criteria (average lighting and lighting uniformity) were developed
for nighttime pedestrian crash study and management.

2.3 Methodology
2.3.1 Matched Case-Control Study

The matched case-control method has been used in highway safety to relate risk factors to
a specific outcome (i.e., crash occurrence) with confounding effects (26-29). Li et al. (27)
recently adopted the matched case-control method to develop CMFs of lighting photometric
criteria for nighttime vehicle crashes. Compared to cross-sectional studies, the matched case-
control method is more pertinent for lighting-related crash modeling. First, it is suitable for rare-
events modeling (e.g., nighttime pedestrian crashes) and addresses the low mean and aggregation
bias issues in the cross-sectional studies (30). Second, it effectively eliminates the impacts of
confounding variables (i.e., counteracting effects of the standard deviation of illuminance on the
mean, and vice versa) because each matched case-control stratum shares the same or similar
values of the confounding variables (37). Finally, it guarantees a balanced number of cases and
controls so the variance in the parameters of interest is reduced and the statistical efficiency of
the model estimation is improved (32). Motivated by these merits, this study adopted the
matched case-control method to fit nighttime pedestrian crashes and lighting data.

Steps for conducting a matched case-control study are as follows:

1. Define — Roadway segments with a uniform length are categorized into two groups—1)
case, for a roadway segment that experienced at least one nighttime pedestrian crash in
the study period, and 2) control, for a roadway segment that did not experience any
nighttime pedestrian crashes in the study period.

2. Match — A certain number of controls are randomly matched to each case based on the
similarity of confounding variables related to both the risk factor of interest (e.g.,
photometric patterns) and the outcome (i.e., nighttime pedestrian crash). With this
matching technique, the biased estimations on the association between the risk factor of
interest and the outcome can be avoided by mitigating the disturbance from confounders
(31). The case-control ratio is determined by the minimum ratio of controls to cases
among all cross-classification categories.

3. Model — A conditional logistic regression model is developed based on the matched case-
control strata. The odds ratio, which represents the change of relative nighttime crash
risks due to an alternation of unmatched risk factors (e.g., street lighting photometry), is
derived from the fitted model and could be used as the equivalent of a CMF (27, 33).

2.3.2 Conditional Logistic Regression

Conditional logistic regression extends logistic regression by accounting for stratification
in matched case-control studies (34). Let y;; denote the j™ observation (i = 1, 2, -+, I) of the i"
stratum j (j = 1, 2, ---, J). The unconditional likelihood of one observation is

=D
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4 BX::
Pr(yij = 1) - 2 (al d ”)
1+exp (al- + ﬂXl-]-)

(1)

where Xj; is a vector of k explanatory variables associating with y;;; B is the coefficients

corresponding to X;;; ai is the stratum-specific interpretation term reflecting the different
combination effects of confounding variables for different strata. Maximum Likelihood
Estimation (MLE) based on the unconditional likelihood is invalid and biased, as the number of
parameters (I + k) grows with the number of observations (assuming the case-control ratio is

fixed).

To eliminate unnecessary parameters (i), the conditional likelihood of each stratum i is
calculated as:

J

; exp (BXi1)
L;|B) =P yil=1,yij=0for]>1|Xi]-,Zyij=1,[; i

4 " Tjesexp (BXy)

)

where y;; is the case observation of the i stratum; y; j for j > 1 are the matched controls
of the i stratum; X;; is the vector of explanatory variables associating with y;;. As the strata are
assumed to be independent of each other, the conditional log-likelihood function LL(Y|S) over
the population of / strata can be written as (37):

1
LL(Y|B) = — Zl_:lln {1 + ZM exp[B(X;; - Xil)]} 3)

The MLE is used to maximize LL(Y|B) with respect to B.
2.3.3 0Odds Ratio

The odds ratio indicates the change of relevant risk due to the alternation of an
explanatory variable. Based on the definition, the odds ratio is equivalent to the CMF. For a
dummy variable, the odds ratio is defined as the ratio of the odds that nighttime crashes occur in
the presence of a roadway characteristic & (xx = 1) to the odds that nighttime crashes occur in the
absence of that roadway characteristic & (xx = 0), holding other variables constant. The odds ratio
for a dummy variable can be written as follows.

P(yio = 1lx, = 1,Z)
[P(yio = Olx, = 1,Z)]
P()’io = 1|xk = O,Z)
[P(yio = Olx, = 0,2)]

OR(xy) =

= exp(B) 4

where Z is the vector of explanatory variables other than x«k; S, is the estimated parameter for x;,.
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2.4 Model Development
2.4.1 Data Collection

Researchers at the Center for Urban Transportation Research (CUTR) at the University of
South Florida used the Advanced Lighting Measurement System (ALMS) (35) to collect the
horizontal illuminance data. This system precisely measures horizontal illuminance and
generates two measurement points every 10 ft for each lane. With this system, the CUTR team
completed illuminance measurements for more than 300 center miles in Tampa from 2011 to
2014. The data were collected in an entirely dark environment (9:30—11:59 PM) to ensure that no
natural light was present. In this study, 440 roadway corridors in urban and/or suburban areas
with street lighting data were identified based on the following criteria—1) roadway sections
between two successive signalized intersections, 2) equipped with High-Pressure Sodium (HPS)
light bulbs, and 3) no upgrades on street lighting in the past several years. A 250-ft buffer was
subtracted from the two ends of the roadway corridor to exclude influence from adjacent
signalized intersections.

2.4.2 Case and Control Definition

The 440 roadway corridors were separated into small segments with a uniform length.
Different segment lengths (600 ft, 800 ft, 1000 ft, 1200 ft, 1400 ft) were tested, and the length of
600 ft was selected, given that it produced the best model results in terms of the variable
significance. In total, 1,638 segments were produced.

Nighttime crash data from 2011 to 2014 were matched to roadway segments. A case was
defined as a segment that experienced at least one nighttime pedestrian crash, and a control was
defined as a segment that did not experience any nighttime pedestrian crashes. The measured
lighting data points (horizontal illuminance at foot-candle, HFC) that fall into the same roadway
segment were used to calculate the mean and standard deviation. Segments with missing
information were screened out, which left 1,234 segments for matching.

2.4.3 Matching

The HFC mean and standard deviation, representing average brightness and uniformity,
respectively, are confounders of each other because they are correlated and both related to the
outcome (i.e., nighttime crashes) (27). As plotted in Figure 2-1, it is clearly observed that the
mean and standard deviation of HFC are positively correlated; the correlation becomes more
significant as the mean decreases. When the mean is less than 0.7 fc, Pearson’s correlation
coefficient is as great as 0.86, indicating a strong correlation. This correlation may prevent
models to correctly distinguish the safety effects of one criterion from another. Because the
impacts of the two photometric measures on crashes are theoretically converse, the positive
correlation between them may result in counterintuitive estimations. Therefore, when quantifying
the safety effects of one photometric measure, it is necessary to control the impacts of another to
develop reliable CMFs. In this study, two models were developed—1) matching the standard
deviation to address the impact of the mean on nighttime pedestrian crash occurrence, and 2)
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matching the mean to address the impact of the standard deviation on nighttime pedestrian crash
occurrence.

I ‘When mean < 0.7 L[] Y
Pearson 1= 0.86 o .

p-value <0.001 . o o,

Tlluminance Standard Deviation (fc)

I
0 0.2 0.4 0.6 0.8 1 12 1.4 16 1.8

Illuminance Mean (fc)

Figure 2-1. Illuminance standard deviation vs. illuminance mean

Annual Average Daily Traffic (AADT), representing traffic exposures, is another
confounder commonly matched in case-control studies for vehicle crashes (21, 26, 28, 29, 36,
37). However, AADT does not present a strong correlation with either the mean (» = 0.29) or
standard deviation (» = -0.03). To avoid overmatching, this study treated AADT as an
explanatory variable rather than a matching variable.

As both the mean and standard deviation are continuous, it is impossible to match them
by the exact values. The following procedures were carried out to categorize them into different
levels—1) calculate the mean u and standard deviation o of the two photometric measures,
respectively, and 2) categorize the two photometric measures based on u and o. The cutoff
values are —oo,u — 1.50, 1 — 0.50, 1 + 0.50, n + 1.50 and + oo.

Sample sizes by matched categories are presented in Table 2-1. To keep the number of
samples of different categories as high as possible, a case-control matching ratio of 1:6 was used,
as it is the minimum in Table 2-1. This makes the analysis power of the case-control study
approximately 98% (30).

Table 2-1. Matched Categories and Sample Sizes

HFC Mean (fc)

<0.045 0.045-0.421 0.421-0.797 0.797-1.172 >1.172 Total
Case Control Case Control Case Control Case Control Case Control
6 131 21 237 36 350 36 369 6 42 1234

HFC Standard Deviation (fc)

<0.069 0.069-0.299 0.299-0.529 0.529-0.760 >(.760 Total
Case Control Case Control Case Control Case Control Case Control
7 162 12 131 37 494 42 298 7 44 1234
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2.4.4 Descriptive Statistics

A stratum consists of one case and six randomly-matched controls. A total of 105 strata
(105 cases and 630 controls) were identified. Explanatory factors for each segment were
converted into dummy variables. Descriptive statistics of explanatory variables are provided in

Table 2-2.
Table 2-2. Descriptive Statistics of Explanatory Variables

Mean Model Standard Deviation Model

Case Control Case Control

Variable Description (n = 105) (n = 630) (n = 105) (n = 630)
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

HFC mean < 0.2 fc 0.171 0.379 0.133 0.340 \ \ \ \

0.2 fc<HFCmean<0.5fc 0.133 0.342 0.152 0.360 \ \ \ \

0.5fc<HFCmean<1.0fc 0.505 0.502 0.537 0.499

HFC mean > 1.0 fc 0.192  0.396 0.178 0.383 \ \ \ \
HFC std dev < 0.52 fc \ \ \ \ 0.514 0.502 0.671 0.470
HFC std dev > 0.52 fc \ \ \ \ 0.486  0.502 0.329 0.470
Daytime pedestrian crash 0.191 0.395 0.044  0.206  0.191 0.395 0.037 0.188

occurred

Shoulder width <9 ft 0.581 0.496 0.371 0.484  0.581 0.496 0.346 0.476
Curve presence 0.171 0.379 0.344 0.476  0.171 0.379 0.340 0.474
Access points > 12 0.286 0.454 0.220 0415 0286 0454 0.173 0.379
AADT per lane > 6200 0.600 0.492 0.573 0495 0.600 0492 0.613 0.488

2.5 Model Estimation

The software package STATA 16 (38) was used to fit the two conditional logistic
regression models—mean and standard deviation. The fitted models are presented in Table 2-3
and Table 2-4, respectively. The coefficients, odds ratio (or equivalent to CMF), confidence
interval (CI) of OR, and standard error (SE) of OR were reported. All ORs were significant at a
confidence level of 95% or higher in the two models.

Table 2-3. Fitted Conditional Logistic Model for HFC Mean

Variable Coef. 7 pvalue OR(CMF) 95%CIofOR >0
HFC mean
<0.2 fc Baseline
[0.2 fc, 0.5 fc] -1.49 216  0.031 0.225 [0.058, 0.870] 0.155
(0.5 fe, 1.0 fc] -1.67 234 0.020 0.188 [0.046, 0.764] 0.134
> 1.0 fc -1.93 255 0.011 0.145 [0.032, 0.640] 0.110
gc"‘cyutﬁfl pedestrian crash 1.31 446  0.000 3.719 [2.088, 6.623] 1.095
Shoulder width < 9 ft 093  3.58  0.000 2.537 [1.523,4.225] 0.660
Curve presence -0.97 -3.10  0.002 0.378 [0.204, 0.699] 0.118
Access points > 12 070 241  0.016 2.017 [1.141,3.565] 0.586
AADT per lane > 6,200 076  2.80  0.005 2.142 [1.256, 3.652] 0.583
Model Statistics
Number of observations 735
Log-likelihood -172.671
Pseudo R? 0.155
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Table 2-4. Fitted Conditional Logistic Model for HFC Standard Deviation

Variable Coef. b4 p-value ( C(;}[{F) 95% CI of OR S(l;llgf
HFC standard deviation

<0.52 fc Baseline

>0.52 fc 0.59 2.16 0.031 1.803 [1.056, 3.077] 0.492
Daytime pedestrian crash 1.68 452 0.000 5373 [2.591,11.139]  1.999
occurred
Shoulder width < 9 ft 0.84 3.48 0.000 2.320 [1.444, 3.724] 0.560
Curve presence -0.97  -3.13 0.002 0.378 [0.206, 0.695] 0.117
Access points > 12 0.79 2.74 0.006 2.205 [1.253,3.878] 0.635
AADT per lane > 6,200 0.59 2.22 0.027 1.795 [1.070, 3.010] 0.474

Model Statistics

Number of observations 735
Log-likelihood -167.414
Pseudo R? 0.181

2.6 Discussion
2.6.1 HFC Mean

The mean of horizontal illuminance represents the average brightness of a roadway
segment—the higher the HFC mean, the more visible the pedestrian. Theoretically, an increase
in HFC mean should decrease nighttime pedestrian crash risks. The negative coefficients for
HFC mean variables in Table 3 support this speculation. To be specific, if the HFC mean of a
roadway segment increases from < (0.2 fc to [0.2 fc, 0.5 fc], the relatively nighttime pedestrian
crash risk decreases to 0.255 times; if the HFC mean increases from < 0.2 fc to (0.5 fc - 0.1 fc],
the relatively nighttime pedestrian crash risk decreases to 0.188 times. Further, if the HFC mean
increases from < 0.2 fc to > 1.0 fc, the relatively nighttime pedestrian crash risk decreases to
only 0.145 times. By controlling the HFC standard deviation, reductions of nighttime pedestrian
crash risks when increasing the HFC mean are significant at a confidence level of 95%.

Results also indicate a non-linear relationship between average lighting level and
nighttime pedestrian crash risks. As shown in Figure 2-2, nighttime pedestrian crash risk declines
very quickly in a low mean range (crash reduction factor of 0.775 [= 1 — 0.225] for <0.2 fc —
[0.2 fc, 0.5 fc]). With a continuous increase in average lighting level, nighttime pedestrian crash
risk gradually decreases, but the reduction amplitude becomes smaller; the crash reduction
factors for [0.2 fc, 0.5 fc] — [0.5 fc, 1.0 fc) is 0.164 (=1 - 0.188/0.225) and for [0.5 fc, 1.0 fc) —
> 1.0 fc 15 0.229 (=1- 0.145/0.188). This trend also exists in nighttime vehicle crashes (19, 21,
23).

- (EDD
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\
\
=
o y =0.8399x-1-383
0.225 R2=0.9673
0.188 0.145
<0.2 fc [0.2 fc, 0.5 fc] (0.5 fe, 1.0 fc] > 1.0 fc
HFC Mean

Figure 2-2. Trendline of CMFs of nighttime pedestrian crashes for HFC mean

Visual figures of pedestrians may provide an intuitive understanding of the safety effects
of horizontal illuminance on pedestrian visibility. Figure 2-3 represents a series of scenarios in
which a pedestrian presents on the roadside with various horizontal illuminance levels. Figure
2-3A represents a fully dark environment (HFC = 0.1 fc); although the pedestrian wears a safety
jacket with retroreflective materials, it is still very difficult for a motorist to recognize him from
the background, which implies that an extremely dark environment (< 0.2 fc) is very dangerous
for pedestrians. Figure 2-3B represents a medium bright environment (HFC = 0.5 fc); human
eyes can detect the pedestrian contour in this lighting condition and, compared to the extremely
dark environment (Figure 2-3A), motorists have a much longer detection distance so the risk of
pedestrian collisions may be greatly reduced. With an increase in lighting conditions to medium-
high (HFC = 1.0 fc, Figure 2-3C) and high (HFC = 1.5 fc, Figure 2-3D), pedestrian visibility is
better, but the crash risk reduction effects of increasing the HFC from medium to medium-high
and from medium-high to high are lower than increasing from fully dark (pedestrian is unseen to
motorists) to medium bright (motorist can detect pedestrian contour).
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A. HFC=0.1fc B. HFC =0.5 fc

C. HFC=1.0fc D. HFC = 1.5 fc
Figure 2-3. Visual figures of pedestrians in various lighting conditions
2.6.2 HFC Standard Deviation

The HFC standard deviation is a uniformity measure; compared to ratio-based measures
(max-min ratio or mean-min ratio), it can avoid the amplified impacts of extreme lighting points
and use the full lighting data information such that it is suitable for describing lighting patterns
for a large space (i.e., roadway segments). A high HFC standard deviation, representing a more
diverse distribution of lighting level along a roadway segment, theoretically should decrease
pedestrian visibility and cause higher crash risks because of the driver’s impaired vision and
extended reaction time. The association between the HFC standard deviation and nighttime
vehicle crashes has been proven in two previous studies (23, 24). By controlling the confounding
effects of the HFC mean, this study (Table 2-4) quantified the impact of the HFC standard
deviation on nighttime pedestrian crash risks. Given constant other factors (i.e., average lighting
level), segments with a diverse lighting pattern (HFC standard deviation > 0.52 fc) experience a
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nighttime pedestrian crash risk that is 1.802 times as many as those with a uniform lighting
pattern (HFC standard deviation < (.52 fc).

2.6.3 Other Factors

The daytime pedestrian crash indicator (one or more daylight pedestrian crashes occurred
at a given segment) was included in both models as an explanatory variable to capture the
impacts of risk factors that contributed to both daytime and nighttime pedestrian crashes but not
related to street lighting patterns. These factors are usually not included in the crash database,
e.g., pedestrian exposure levels. The function of the daytime pedestrian crash indicator is similar
to the night-to-day ratio widely used in lighting-safety studies (17, 19, 23, 24, 39, 40). The
coefficients of the daytime pedestrian crash indicator in the models suggest a significantly
positive relationship between nighttime pedestrian crash occurrence and daytime crash
occurrence.

A narrower shoulder width (< 9 ft) was positively related to nighttime pedestrian crash
risk in the two models. This finding is consistent with the existing literature (41, 42). Wider
shoulders provide more refuge space for pedestrians when they are facing collision risks;
meanwhile, wider shoulders usually associate with high-level roadway classification with better
safety design standards, such as better sight distance, traffic controls, and geometric features.

Curve presence was significantly and negatively associated with nighttime pedestrian
crash risk. Fewer pedestrians cross the road at curves than at straight segments, given that driver
sight distance is much shorter at curves. Meanwhile, motorists tend to decrease their speed when
operating through curves. Less exposure together with slower vehicle speed contributes to lower
nighttime pedestrian crash risk. This finding aligns with existing studies that fewer nighttime
pedestrian crashes occur at curves (11, 43).

Access points introduce conflicts between turning vehicles and pedestrians crossing
driveways or side streets along a roadway segment. More access points imply higher crash risks
for pedestrians. The two models indicate that if a segment has more than 12 access points, the
relative risk of nighttime pedestrian crashes increases significantly. With AADT as the measure
of vehicle traffic exposure, the two models indicate that if AADT is higher than 6,200 per lane,
the relative risk of nighttime pedestrian crashes tends to significantly increase.

2.7 Conclusions

This study investigated the safety effects of illuminance photometric criteria (HFC mean
as an indicator of average lighting level and HFC standard deviation as an indicator of lighting
uniformity) on nighttime pedestrian crash occurrence on roadway segments that were overlooked
in previous studies. The matched case-control method successfully decoupled the correlation
between the HFC mean and standard deviation, which resulted in counterintuitive findings in
previous studies. Significant CMFs were developed to quantify the safety effects of the two
photometric criteria. For average lighting level, taking the low HFC mean (<0.2 fc) as the
baseline, the CMFs for medium [0.2 fc, 0.5 fc], medium-high (0.5 fc, 1.0 fc], and high (>1.0 fc)
illuminance means are 0.225, 0.188, and 0.145, respectively. For lighting uniformity, compared
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to low HFC standard deviation (<0.52 fc), the CMF for high illuminance standard deviation (>
0.52 fc) is 1.803. The CMFs can be used in nighttime pedestrian safety management and street
lighting assessment.

Some limitations exist in this study and should be addressed in further studies. First, this
study considered horizontal illuminance only. Due to lack of data, vertical illuminance, an
important photometric measure related to pedestrian safety (44), was not included in the models.
The CUTR team is expanding its lighting data collection efforts in Florida. Vertical illuminance
data collection will be included in follow-up tasks, and the data will be used to address the safety
effects of vertical illuminance for pedestrians in future studies. Second, existing photometric
criteria (mean and standard deviation) are not ideal photometric measures and may not perfectly
capture the “true” spatial relationship of lighting patterns that influence driver vision (27). New
photometric measures are needed to encapsulate and fully account for the spatial relationship
among lighting data points.
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Chapter 3: Safety Effectiveness of
LED Lighting Technology

3.1 Introduction

As oil and gas reserves decrease and the demand for energy increases, energy conservation
is an urgent priority. The use of energy-efficient technology is necessary in roadway lighting to
mitigate the effects of the energy crisis. Light-emitting diodes (LEDs) are fourth-generation light
sources developed as an energy-efficient alternative to traditional street lighting, such as high-
pressure sodium (HPS). As shown in Figure 3-1, LED street lights are designed to keep streets
and roads well-illuminated by directing the output light towards specific locations. By switching
to LED streetlights, cities are able to reduce maintenance, energy cost, glare, and loss of light.
Although LEDs have a higher installation cost than HPS light sources and generally provide
inferior luminous efficacy, continuous development in the capacity of LEDs is anticipated in the
near future. Assuming an annual usage of 4,000 hours, the estimated average lifetime of LEDs is
10+ years; metal halide lamps have a shelf life of approximately 5.5 years. LED light sources can
be switched on/off immediately, but it takes a long time for metal halide lamps to reach an ideal
functioning temperature. Moreover, LEDs will eliminate the problem of hot spots on pavement,
as observed with the use of metal halide street lights, because LEDS provide a uniform
distribution of light. Table 3-1 summarizes the advantages of LED technologies for roadway
illumination.

Figure 3-1. Comparison of HPS (/eft) and LED (right) lighting technologies
(Source: ADOT LED Lighting Pilot Study)
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Table 3-1. Summary of Advantages and Disadvantages of LED Street Lights

Advantages

e LEDs can lead to reduction in energy consumption by as much as 80%.

e LEDs led to an annual saving of $6 million in energy costs in Toronto

e Use of solar-powered LEDs can be an environmentally-friendly illumination
solution.

Long Service Life | e Average life of LED street lamps is ~ 50,000 hours, double that of HPS.

e Most LEDs have CCTs often above 5,000K and a cool bluish-white
appearance.

Color Quality e LEDs have a range of 85-90 on the color rendering index (CRI).

e The white light produced by LEDs can lead to accurate rendering of an
object’s actual color.

o The higher blue content of the LED light spectrum can render LEDs brighter
than conventional light sources at the same lumen output.

e The perceived lighting level of LEDs may not be fully represented by the
conventional lumen and surface-level foot-candle measurements.

e LEDs can turn on/off instantly to full brightness without re-strike time.

e The instant response speed of LEDs can turn on/off LEDs immediately
according to environmental changes.

Compact Size e Due to their compact size, LEDs allow flexibility in their form and design.

e LEDs enable more optical control.

e LEDs can be designed to emit light in a specific direction.

e LEDs can be designed to focus light on a preferred location.

Reduced Light e LEDs can result in less light pollution and light trespass to adjacent areas.
Pollution e LEDs can reduce over-illumination and glare to improve traffic safety for
drivers and pedestrians alike.

o LEDs are free of toxic materials such as mercury.

Energy Efficiency

Mesopic Vision

Lack of Warm-up
Time

Directional Light

En\gronrfr_lfntal e LEDs are free of heavy metals such as lead.
enete e LEDs do not produce ultraviolet and infrared light.
Dimmable e LEDs provide more advantages in dimming over mercury vapor, metal halide,
Capabilities and HPS lamps.
Breakage and e LEDs do not have a filament, arc tube, or fragile glass components.
Vibration o LEDs offer a more robust light source and are more resistant to breakage and
Resistance vibration.
Luminous e The luminous efficacy of LED street lights is not yet superior to conventional
Efficacy street lamps.

e LEDs have a higher rate of power-to-heat conversion compared to
conventional streetlights.

e High-power LED chips generally transform ~ 80% of input power into heat.

e LEDs currently require significantly higher initial installation costs compared
to conventional streetlights.

o LEDs currently require higher replacement costs compared to conventional
street lights.

e The use of LED module arrays has a chance of component failure that
increases with the increasing number of LED chips used.

Heat Conversion
Rate

Installation Cost

Use of LED Array

The existing SPFs and CMFs for lighting levels do not distinguish LED technology and
traditional technologies such as HPS in safety analyses. As more and more road corridors have
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been upgraded to LED systems in Florida and nationwide recently, engineers and managers need
to assess the safety performance of LED technology that has different vision characteristics from
HPS. The SPFs and CMFs developed in the prototype were based primarily on HPS lighting data
and cannot capture the safety characteristics of LED lighting. Only one previous study (3)
explored the impacts of LED upgrade on nighttime crashes. It is needed to develop or calibrate
CMFs for LED lighting based on FDOT District LED upgrade projects conducted in the past
decade. The enhanced computer tools in Phase II will integrate the CMFs for LED lighting and
provide a function to stratify stakeholder needs in assessing the safety performance/benefits of
LED lighting projects.

This study focused on the following objectives:

e Address the safety effectiveness of LED lighting technologies to preventing nighttime
crashes.

e Evaluate the visibility performance of LED colors in terms of human’s detection
distance.

3.2 Experiment Design

The research team collected a 2018 inventory of LED lighting poles on major corridors in
the Tampa Bay area, as shown in Figure 3-2, from FDOT District 7. The inventory provides the
location information and lamp types (HPS, LED, or unknown) for each lighting pole. However,
it does not include the starting date of LED poles, and it impossible to identify the before (HPS)
and after (LED) periods from the inventory. Thus, this study could not apply the before-after
study to compare nighttime crash frequencies before and after upgrading HPS to LED at the
same sites. Alternatively, a cross-sectional study, which compares nighttime crash frequencies
between two site groups (with and without LEDs) during the same time frame, was used in this
study.
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3.3 Data Preparation

The procedure for data collection and processing is given in Figure 3-3.

= Retrieve roadway segments and =  Match lighting poles to each

traffic signals from the FDOT RCI r = Step-1: Split Road Segments by Traffic Signals segments
datgbase ] | = Ifasegment contains 100% LEDs,
*  Split segments by traffic signals | it is defined as an LED segment
L] Dlep any splatted segments <0.1 | = Ifasegment contains 100% HPS,
miles [ - it is defined as a HSP segment
= Finally, 749 segments were v I_ gl Drop other segments
produced =  Finally, 43 LED segments and 331

Step-2: Identify Lamp Types for each Segment |- !

HPS segments were produced

\/\ \/\

A 4

= Calculate weighted average values
for

Step-3: Match RCI Data to each Segment

= AADT and truck facts (2018

r
|
and 2019) : = Retrieve crash data from FDOT
*  Median width I State Safety Office Geographic
= Number of lanes I y Information System (SSOGIS)
=  Shoulder width I = Identify nighttime crashes
= Speed limit Rl Step-4: Match Crash Data to each Segment 1 = Lighting condition = Dark —
= Calculate density (numbers per | lighted, Dark — not lighted,
mile) for - Dark — unknown lighting
=  Median opennings =  Match nighttime crashes to each
segment
A 4
\/\ Step-5: Develop Statistical Models \/\

Figure 3-3. Procedure for data collection in LED study

Data Sources

Three data sources were used in this study. The inventory of FDOT D7 lighting poles in
2018 was provided by FDOT District 7 and included locations and lamp types of street lighting
poles. The traffic and geometric information were retrieved from the FDOT Roadway
Characteristics Inventory (RCI) database, and historical crash data were obtained from the FDOT
State Safety Office Geographic Information System (SSOGIS).

RCI Data Matching Method

RCI data (traffic and geometries) were matched to each segment. For statistical modeling,
the Highway Safety Manual (45) advises that segments need to be divided into homogenous
sections in which roadway characteristics are similar. However, homogenous segmentation may
result in very short segments and lead to a zero-inflated issue (46). To avoid this, the research
team adopted the aggregation method (aggregating roadway characteristics for a long segment).
The two methods are explained in Figure 3-4. In addition, any segments shorter than 0.1 miles
were removed from the dataset to avoid bias estimation (47).
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Attribute 1 — 3 values

Attribute 2 — 2 values

Output: 4 segments
with homogenous
1 2 3 4 attributes 1 and 2

®——— 9o —=
e —— 9o -
®——— 0 — <

Attribute 1 - 3 values

Output: 1 segment with
@ { two weighted average
attributes

Value; x Length;

Weighted Average Attribute = Length,

Figure 3-4. RCI data matching methods

Analysis Time Frame

The inventory of lighting poles does not include information on activation date for LED
lighting poles; the only information is LED poles in activated status in 2018. To minimize
identification errors for lamp types, the analysis time frame was adopted as two years—2018 and
2019. It is assumed that FDOT did not change the lamp types (LED and HPS) in those two years.
Nighttime crash frequencies were counted for the two years for each segment, and traffic
information (AADT and truck percentage) were matched by the two years for each segment;
their yearly weighted averages were calculated using the method described in Figure 3-4.

A final dataset containing 418 segments was produced for statistical modeling. The descriptive
statistics of the dataset are shown in Table 3-2.
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Table 3-2. Descriptive Statistics of Collected Data for LED Study (obs = 418)

Variable Mean Std Min Max
Nighttime crashes, 2018 and 2019 14.978 16.036 0 151
LED segment (1 = yes, 0 =no) 0.103 0.304 0 1
Segment length (mi) 0.611 0.693 0.1 5.575
Yearly weighted average AADT, 2018 and 2019 76520.09 | 38633.34 1300 273200
Yearly weighted average truck factor, 2018 and 2020 9.096 4.550 3.2 27.7
Weighted lane width (ft) 11.778 0.781 10 16
Weighted lane width (ft) 23.944 13.257 0 117.727
Weighted speed limit (mph) 45.136 6.265 30 62
Density of unsignalized intersections 10.638 7.472 0 43.716

3.4 Model Development

Nighttime crashes are a typical count data with overdispersion (variance > mean). The
negative binomial (NB) model was used to account for over-dispersion in count data. The model

can be written as (48):

ri+a)+y,) la

Pr(y;) = ( )"(

rd/a)y,! “(1/a)+ 4,

)yl

(1/a)+ .

)

where Pr(y;) is the probability of segment i having y; crashes occurring per a given period (e.g.,
one year); I'(+) is a gamma function; 4; is the expected number of crashes per period at segment i
as a function of explanatory variables; a is the over-dispersion parameter. The log-linear form of

Ai can be expressed as

) = Ely,|= EXP(X B +¢,)

(6)

where EXP(e;) represents a Gamma-distributed disturbance term with mean 1 and variance a. X;
denotes the vector of explanatory variables; and f is the vector of coefficients.

CMF is the comparison of crash frequencies with and without a trament. For a binary
variable (x:1 — with treatment, 0 — without treatment), its CMF can be written as:

Crashes with Treatment

CMF = =

eﬁk'1+2ﬁi'xi

Crashes without Tratement  ePkOTXBiXi

(7

— eﬁk

where 3}, is the coefficient for x;; x; and B; are other independent variables and associated

coefficients, assuming they are constant over sites.

The statistical package STATA 16 was used to estimate the NB model for nighttime
crashes. A step-wise method was used to select independent variables. Any variables with a

significance higher than 90% were included in the model. The fitted model is shown in Table
3-3.
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Table 3-3. Fitted Negative Binominal Model for LED Study

Coefficient S.E. %_ . p- [95% conf. interval]
statistics value

Constant -5.904 0.633 -9.32 0 -7.145 -4.662
Logarithm of yearly weighted 0777 | 0.056 | 13.77 0 | 0666 | 0.887
average AADT
Logarithm of segment length 0.546 0.044 12.41 0 0.460 0.632
Density of unsignalized intersections 0.026 0.005 5.1 0 0.016 0.036
LED corridor indicator
(1= LED, 0= HPS) -0.191 0.115 -1.66 0.098 | -0.417 0.035
alpha (overdispersion factor) 0.394 0.034 0.333 0.467
Model Statistics
Number of observations 416
Log likelihood -1418.768
Pseudo R? 0.0837
Degree of freedom 6
AIC 2849.536
BIC 2873.72

3.5 Conclusions

The sign of LED segment indicator is a negative value and significant at a confidence
level of 91%. It can be concluded that, compared to HPS, LED tends to decrease nighttime crash
frequency on a roadway segment. The CMF for LED is derived from Eq. 7 as

CMF = ¢ %191 = 0.83

If the lighting system on a roadway segment is upgraded from HPS to LED, nighttime
crash frequency is more likely to be reduced by 17% (=1-0.83*100%). This result indicates that
LED not only introduces economic benefits (i.e., long service life and energy saving) but also
brings safety benefits. The safety benefits of LED lighting is evidenced by its better performance
for driver vision; the higher blue content of the LED light spectrum can render LEDs brighter
than conventional light sources at the same lumen output.

This study did not include lighting pattern parameters (i.e., horizontal illuminance) due to
the absence of lighting data on the study corridors in 2018. Thus, comparison of LED and HPS
could not exclude the influence from different lighting patterns. The CMF can explain the
benefits of upgrading projects in FDOT District 7, but it may be biased to interpret the safety
improvement from HPS to LED with the same lighting photometric patterns (i.e., same lighting
level or same uniformity). A future study will collect enough data to address this issue.
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Chapter 4: Upgrading Lighting Uniformity
Diagnosis Algorithm
4.1 Problem Statement

Uniformity is a measurement of how equally light is distributed on a road. A good
uniformity design improves both visibility and visual comfort for drivers (6). Many
transportation agencies have adopted two illuminance ratios—max-min ratio (MMR) and
average-min ratio (AMR)—to measure roadway lighting uniformity:

HFC
MMR = _ “Max
HFChin 5
HFCpyg ®)
AMR = —=
HFChiin

FDOT’s Florida Design Manual establishes a requirement of 4:1 or lower uniformity ratio for
AMR and 10:1 or lower uniformity ratio for MMR, as shown in Table 4-1.

Table 4-1. FDOT Conventional Roadway Lighting Requirements

Road Classification IlIumination Level Uniformity Ratios
Average Initial HFC Avg/ Min Max/Min
Interstates, Expressways, Freeways, . .
Major Arterials 1.5 4:1 or less 10:1 or less
All other roadways 1.0 4:1 or less 10:1 or less
Pedestrian ways and bicycle lanes 2.5 4:1 or less 10:1 or less

In practice, simply calculating the MMR and AMR for a whole segment may introduce
extremely high ratio values and may not accurately capture the “true” pattern features
influencing driver vision on a roadway corridor. For example, as shown in Figure 4-1, the
uniformity for the whole roadway segment is the ratio of the maximum value (1.5 fc) over the
minimum value (0.1 fc), equal to 15. The maximum illuminance point, however, is far from the
minimum illuminance point. The change from minimum illuminance to maximum illuminance
does not influence driver vision; the true pattern that deteriorates the vision is the change from a
low-lit zone (0.1 fc) to a high-lit zone (0.9 fc) in successive subsections along the travel route.

********************* eam
.-
0.1 0.1 0.1 01 04 05 06 0.7 @
EED e 9 o @ @& e 0O O 6
¢ | g
— |
min | max

true pattern

Figure 4-1. Example of ratio-based uniformity calculation for a whole roadway segment
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4.2 Sliding Window Algorithm

This study developed an sliding window diagnosis algorithm to better address the
uniformity pattern along a corridor. When driving along a road segment, a driver needs to
continuously scan the front to detect any potential risk. The field of driver vision is a function of
travel speed, as shown in Figure 4-2.

A
100 km/h
600m | —>»
500m - 1 80 km/h
—> 77
400m _13 - 65 km/h
300m |
200m |
100m -
Om

Figure 4-2. Field vision and speed (49)

In night driving, driver vision is influenced by the lighting pattern within the field of
vision rather than the whole segment. Thus, the calculation of uniformity should be applied on a
window that covers the field of vision rather than the whole segment.

Figure 4-3 shows the concept of the sliding window algorithm, which creates a series of
windows along a road segment from the beginning of segment to the end of segment in small
steps. The windows, which are a rectangle with parameterized dimension (length and width),
represent the fields that influence driver vision at each moment when driving on the segment.
The uniformity measures, MMR and AMR, are calculated for each window. The windows may
be overlapped, as the move step is usually smaller than the window length. The uniformity
measures for the overlapped area adopt the “worst case”—the maximum uniformity measures of
the overlapped windows.

Moving Step

Sliding Window

\
! 3rd| — — — —Moving Direction- — —p»
|

(N-1)th

1st Nth
T

- Overlapped area by Windows 1, 2,
and 3

=  The area uniformity is labeled as the
worst uniformity of the 3 windows

Figure 4-3. Concept of sliding window algorithm for uniformity diagnosis
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Finally, the areas with an issued uniformity (does not satisfy the DOT standards) are
labeled. Percentage of issued uniformity, weighted average uniformity, and worst uniformity
performance are calculated for each section.

The detailed algorithm is described in Figure 4-4 and Figure 4-5. The terms used in the
algorithm are as follows:

e Window — a rectangle covers a driver’s vision field when driving; the window is the unit
for uniformity calculation, and the window dimension can be configured:

- Length — determined by stopping sight distance, which is a function of speed; 600 ft
is default value.

- Width — for undivided roads, width suggested to cover all through lanes or,
otherwise, through lanes on one side.

e Moving step — distance between two adjacent windows, representing the uniformity scan
resolution; a smaller moving step may introduce additional processing time; the default
value is 100 ft.

e Slice — area overlapped by sliding windows; its uniformity is labeled by the worst
uniformity measure of the overlapped windows.

e Section — aggregation of neighboring slices that have similar uniformity; length of
section should satisfy minimum length; final statistics calculated based on sections.
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Figure 4-4. Sliding window algorithm for uniformity diagnosis
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Pair Identification -

==

If the two neighboring slices have the same label, then
merge

If the two neighboring slices have different label and
either of them cannot satisfy the minimum length, then
merge

Set the Pair as
“Blocked”

Combine the neighboring slices as one section
Recalculate uniformity measure for the combined
section

Each section length is greater than the minimum
length, and
All neighboring sections has different labels

A Satisfy Merge
Criterion?

=== Merge

b Satisfy Stopping

Criterion?

Final Sections

Figure 4-5. Hierarchical clustering for slice merging

4.3 Example of Sliding Window Algorithm

Lighting data were collected on a 0.5-mile segment (College Ave between US-41 and 7™ St SE,

Ruskin, FL). The segment layout and lighting data are shown in Figure 4-6. Lighting statistics
are shown in Table 4-2.
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FC_6
> _l ° 1:546384-2:208878
[fsie]
Figure 4-6. Lighting data for 0.5-mile segment
Table 4-2. Horizontal Illuminance Statistics for Whole Segment,
College Avenue in Ruskin, FLL
LT Points Average Max Min MMR AMR
1,106 0.56 fc 2.21 fc 0.1 fc 22.1 5.6
This study applied the sliding window diagnosis algorithm using the following
parameters:

e Uniformity measure: MMR (max-min ratio)
e Window Length: 600 ft (0.114 mi)
e  Window Width: all through lanes on both sides
e Moving Step: 100 ft (0.019 mi)
e Minimum Length of Final Sections: 0.1 mi
e Uniformity Categories (category for demonstration only):
- 1 —-MMR <10 (meets FDOT standard)
- 2 - 10<MMR=<20 (does not meet FDOT standard)
- 3 -20<MMR<30 (significantly does not meet FDOT standard)
- 4 —-MMR> 30 (extremely does not meet FDOT standard)
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Step 1: Generate windows and calculate MMR. A series of window was created along the
segment in a moving step of 0.114 miles. MMR was calculated for each window. The sliding
windows and uniformity measures are shown in Table 4-3.

Table 4-3. Sliding Windows and Uniformity Measures

Window | BMP EMP Average Max Min MMR
1 0 0.114 0.55 1.69 0.13 12.97
2 0.019 0.133 0.56 1.69 0.17 9.94
3 0.038 0.152 0.59 1.69 0.17 9.94
4 0.057 0.17 0.51 1.62 0.14 11.36
5 0.076 0.189 0.45 1.62 0.13 12.27
6 0.095 0.208 0.41 1.34 0.13 10.14
7 0.114 0.227 0.50 1.81 0.13 13.68
8 0.133 0.246 0.60 1.94 0.13 14.65
9 0.152 0.265 0.58 1.94 0.13 14.65
10 0.17 0.284 0.58 1.94 0.13 14.65
11 0.189 0.303 0.60 1.94 0.13 14.42
12 0.208 0.322 0.70 2.21 0.10 21.39
13 0.227 0.341 0.65 2.21 0.10 21.39
14 0.246 0.36 0.57 2.21 0.10 21.39
15 0.265 0.379 0.53 2.21 0.10 21.39
16 0.284 0.398 0.51 2.21 0.10 21.39
17 0.303 0.417 0.59 2.21 0.10 21.39
18 0.322 0.436 0.57 1.72 0.10 16.64
19 0.341 0.455 0.59 1.72 0.12 14.05
20 0.36 0.473 0.63 1.72 0.12 14.05
21 0.379 0.492 0.61 1.72 0.13 13.66
22 0.386 0.5 0.62 1.72 0.14 12.60

Step 2: Generate slices. A slice represents a small area in which multiple windows are
overlapped; the slice length is the moving step (0.019 miles). For example, Slice 4 (0.057 —
0.076) is the overlapping area for Window 1 (0 — 0.114), Window 2 (0.019 — 0.133), Window 3
(0.038 — 0.152), and Window 4 (0.057 — 0.17). As Window 1 has the worst uniformity (MMR =
12.97), the uniformity for Slice 4 is labeled as 12.97. The slices and associated uniformity
measures are given in Table 4-4.
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Table 4-4. Slice Generation

Slice BMP EMP MMR
1 0 0.019 12.97
2 0.019 0.038 12.97
3 0.038 0.057 12.97
4 0.057 0.076 12.97
5 0.076 0.095 12.97
6 0.095 0.114 12.97
7 0.114 0.133 13.68
8 0.133 0.152 14.65
9 0.152 0.17 14.65
10 0.17 0.189 14.65
11 0.189 0.208 14.65
12 0.208 0.227 21.39
13 0.227 0.246 21.39
14 0.246 0.265 21.39
15 0.265 0.284 21.39
16 0.284 0.303 21.39
17 0.303 0.322 21.39
18 0.322 0.341 21.39
19 0.341 0.36 21.39
20 0.36 0.379 21.39
21 0.379 0.398 21.39
22 0.398 0.417 21.39
23 0.417 0.436 16.64
24 0.436 0.455 14.05
25 0.455 0.473 14.05
26 0.473 0.492 13.66
27 0.492 0.5 12.60

Step 2: Merge slices. Table 4-5 shows the sections that merge neighboring slices with the same
MMR values. The MMR category is assigned to each section. Compared to the MMR for the
whole segment (MMR=22.1), the sliding window algorithm gives more detailed information on
the uniformity pattern. Table 4-5 indicates that uniformity of all sections does not meet the
FDOT standard; however, Section 4 (0.208-0.417) has the worst uniformity (MMR=21.39). The
weighted average MMR for this segment is calculated as

) Y. MMR; X Length;
Weighted Average MMR = =17.01
Y. Length;

The diagnosis results are displayed in Figure 4-7.

- (EDD

CENTER FOR TRANSPORTATION
CIEDDU TAEDU Eouity, Decisions & DoLLars

A C teddautaedy 4



31

Table 4-5. Merge Slices by Value to Sections

Section BMP EMP MMR Category
1 0 0.114 12.97 2
2 0.114 0.133 13.68 2
3 0.133 0.208 14.65 2
4 0.208 0.417 21.39 3
5 0.417 0.436 16.64 2
6 0.436 0.473 14.05 2
7 0.473 0.492 13.66 2
8 0.492 0.5 12.60 2
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Figure 4-7. Display of uniformity diagnosis results

Step 3: Hierarchical Clustering (Optional). The sections can be clustered based on the
uniformity category. For example, Sections 1, 2, and 3 in Table 4-5 have the same category
(Category 2) and can be merged into one section. Sections 5—8 in 4-4 also have the same
category (Category 2). However, the total length of the four sections is 0.083 miles, less than the
minimum length for the final sections (0.1 miles). Thus, the four sections were combined with
Section 4 in Table 4-5. The final sections are shown in Table 4-6.

Table 4-6. Slice Merge by Category using Hierarchical Clustering

Section BMP EMP Length Category
1 0 0.208 0.208 2
2 0.208 0.5 0.292 3

- (EDD

CENTER FOR TRANSPORTATION
Eouity, Decisions & DoLLars

CIEDDU A EDU



32

Chapter 5:  Software Development

The computer tools developed in Phase I were built on an Esri Web-GIS platform and a
map was integrated for data visualization, such as roadway inventory, heatmaps, analysis results,
and figures. Based on the prototype developed in Phase I, this study recoded the analysis engine
to integrate the uniformity of a diagnosis algorithm developed in this study and to optimize the
speed of the existing algorithms. The analysis engine is coded as a pure Python package and can
run as a stand-alone application or a Python toolbox in ArcGIS Pro. The system architecture of
analysis engine is shown in Figure 5-1.
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Figure 5-1. System architecture of analysis engine
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The major modules include:

o Data Connection — provides a logic layer to separate analysis functions from data
sources. The module can access lighting data, roadway characteristics inventory (RCI)
data, and crash data from different sources, such as web service (REST API), local
database (SQLLite), or flat text files. The retrieved data will be provided to other
modules.

o Diagnosis — provides two major diagnosis functions—(1) hierarchical clustering
algorithm for lighting level diagnosis, and (2) sliding window algorithm for uniformity
diagnosis.

o Safety Performance Function (SPF) — predicts nighttime crashes based on lighting data,
geometries, and traffic data for a segment; can also estimate the benefits (crash reduction)
due to a lighting improvement.

e RCI - processes geometry and traffic data obtained from the FDOT RCI database for
SPFs; provides two major functions—s: (1) homogenous segmentation and (2) weighted
average. The detailed information of the two functions is given in Figure 3-4.

The study optimized the algorithms to improve the running speed. Figure 5-2 shows the
comparison of applying the hierarchical clustering diagnosis algorithm on the same segment
before and after optimization. With the optimization, the running time is reduced from 504
seconds to 53 seconds. The optimized algorithm can be used on a big-scale network.
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Figure 5-2. Comparison of running time for applying hierarchical clustering diagnosis
on Rickenbacker Drive, Ruskin, FL
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Chapter 6: Summary and Conclusions
6.1 Summary and Conclusions

Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and
security for multimodal road users (motorists, pedestrians, cyclists, transit passengers). To cost-
effectively maintain a roadway lighting system, key tasks in infrastructure management include
periodically measuring roadway lighting levels, diagnosing lighting performance based on
collected data, and providing decision-making support for maintenance and improvement.

The ALMS developed by CUTR provides a low-cost and time-effective solution for
collecting high-resolution lighting data for a big-scale roadway network. A previous CTEDD-
study, “Development of Automated Roadway Lighting Diagnosis Tools for Nighttime Traffic
Safety Improvement, Phase 1,” developed improved an analysis tool to diagnosis lighting
patterns and predict nighttime crash risks based on the big lighting data. This Phase II study
enhanced the tool in terms of investigating the impacts of lighting patterns on nighttime
pedestrian crashes, addressing the effectiveness of LED technologies, developing a sliding
window algorithm for uniformity diagnosis, and recoding the analysis engine to integrate more
functions and improving processing speed.

Major conclusions from this study include the following:

e Both the mean of horizontal illuminance (representing average lighting level) and the
standard deviation of horizontal illuminance (representing uniformity) significantly
impact nighttime pedestrian crashes on roadway segments. For average lighting level,
taking the low HFC mean (<0.2 fc) as the baseline, the CMFs for medium [0.2 fc, 0.5 fc],
medium-high (0.5 fc, 1.0 fc], and high (>1.0 fc¢) illuminance means are 0.225, 0.188, and
0.145, respectively. For lighting uniformity, compared to low HFC standard deviation
(<0.52 fc), the CMF for high illuminance standard deviation (> 0.52 fc) is 1.803.

e Upgrading the conventional lighting system (HPS technologies) to LED lighting tends to
decrease nighttime crash frequency. The CMF for LED lighting upgrading is 0.83, which
can be used to evaluate the benefits of roadway lighting upgrading projects in Florida.

e Ratio-based uniformity measures (max-min ratio, average-min ratio) for the whole
segment may introduce extremely high values and cannot capture the true lighting pattern
influencing driver vision. The sliding window algorithm scans the lighting patterns along
a segment and calculates the uniformity measures within a limited area covering a
driver’s vision field. The algorithm can provide more reasonable and detailed diagnosis
of lighting uniformity.

e The recoded analysis engine contains more functions and greatly improves processing
speed. The engine can be executed as a stand-alone application or can be integrated into
ArcGIS Pro or the Web-GIS tool developed in Phase 1. The improved processing speed
allows applying the analysis to a big-scale roadway network.
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6.2 Implementation

The CUTR team is working with FDOT District 7 to collect and analyze lighting data on
District-wide state roads under contract FDOT BDV25 762-30. As shown in Figure 6-1, the
identified corridor segments within the district include:

e 171 State Road segments with streetlights
e 412 total centerline mileage is 412 miles
e The total lane mileage is 1,926 miles.
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Lakeland

2 T
S
X
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Figure 6-1. FDOT District 7 district-wide lighting data collection and analysis

The analysis methods and engine developed in this study will be used to analyze the
district-wide lighting data and provide decision-making support to FDOT for their roadway
lighting management and maintenance.
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