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Abstract 
 

Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and 

security for multimodal road users (motorists, pedestrians, cyclists, and transit passengers). To 

cost-effectively maintain a roadway lighting system, key tasks in infrastructure management 

include periodically measuring roadway lighting levels, diagnosing lighting performance based 

on collected data, and providing decision-making support for maintenance and improvement. 

The Advanced Lighting Measurement System (ALMS) developed by CUTR provides a low-cost 

and time-effective solution to collect high resolution lighting data for a big-scale roadway 

network. This project aimed to develop innovative methods and tools to effectively analyze “big” 

lighting data.  

A computer tool was developed on the ArcGIS web-GIS platform in this study that integrates 

three core modules and provides core functions for lighting pattern diagnosis, nighttime crash 

risk prediction, and data visualization. The hierarchical clustering algorithm is used to recognize 

lighting patterns based the similarity of a photometric measure (average illuminance or 

uniformity). Safety performance function and Empirical Bayesian model were adopted to predict 

nighttime crash frequency with given lighting conditions. The study developed Crash 

Modification Factors to assess crash reduction due to lighting pattern improvement.  

The developed methods and tools were applied in CUTR’s new lighting data collection and 

analysis tasks from the Florida Department of Transportation (FDOT) and Johnson, Mirmiran & 

Thompson (JMT), Inc. Two case studies demonstrated the performance of the computer tool in 

various application scenarios, such as lighting pattern recognition, lighting system upgrading 

validation, and nighttime crash risk analysis. To implement the developed tools in an operational 

environment, the research team will continue to upgrade the tools, including developing Standard 

Operation Procedures (SOPs), improving lighting pattern diagnosis model, and providing 

planning-level lighting management for decision-makers.   
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Chapter 1: Introduction 
 

1.1 Background 

Nighttime crashes, particularly those that result in fatalities and injuries, are overrepresented on 

the US highway system. About 51% of fatal crashes and 30% of injury crashes occur at night, 

although only 21–23% of vehicle miles traveled (VMT) are at night (Monsere and Fischer, 

2008). This issue is even more serious for vulnerable road users; nighttime crashes account for 

almost 70% of pedestrian fatalities (NHTSA, 2015). Reduced visibility in darkness, accompanied 

by drowsy and impaired driving, are the primary contributing factors to nighttime crash 

occurrence and injuries (National Safety Council, 2018). Roadway lighting, which “significantly 

improves the visibility of the roadway, increases sight distance, and makes roadside obstacles 

more noticeable to the driver, and therefore more avoidable” (FHWA, 2012), has been 

recognized as a vital countermeasure to prevent nighttime crashes. Additionally, roadway 

lighting provides clear benefits of personal security for pedestrians, bicyclists, and transit users 

during nighttime (FHWA, 2012). Thus, ensuring that a roadway lighting system provides 

adequate illumination is critical to improve nighttime safety and security for all road users.  

The AASHTO Roadway Lighting Design Guide (AASHTO, 2011) provides roadway lighting 

design standards in terms of average horizontal/vertical illuminance, average luminance, and 

ratio-based uniformity metrics. The standards have been adopted by state departments of 

transportation (DOTs) for new street lighting design and existing system maintenance. Table 1 

presents the lighting level criteria adopted in Florida.  

Table 1. FDOT Lighting Level Criteria  

Roadway Classification 

Average  

Illuminance Level 

(foot-candle) 

Illumination  

Uniformity Ratios 

Veiling  

Luminance 

Ratio 

Horizontal Vertical Avg./Min. Max./Min. Lv(max)/Lavg 

Conventional Roadway Lighting 

Freeway 1.5 

N/A ≤ 4:1 ≤ 10:1 ≤ 0.3:1 Major Arterials 1.5 

Other 1.0 

High Mast Roadway Lighting 

All Roads 0.8 – 1.0 N/A ≤ 3:1 ≤ 10:1 N/A 

Signalized Intersection Lighting 

New Construction 3.0 2.3 

≤ 4:1 ≤ 10:1 N/A 
Lighting Retrofit 

1.5 (std.) 

1.0 (min.) 

1.5 (std.) 

1.0 (min.) 

Midblock Crosswalk Lighting 

Low Ambient Luminance 

N/A 

2.3 

N/A N/A N/A Medium & High Ambient 

Luminance 
3.0 

Source: FDOT Design Manual, Table 231.2.1 
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However, because of natural bulb degradation, obstacles including trees and animals, external 

lighting resources, and other unexpected factors, roadway lighting illumination performance may 

vary over time and cannot meet roadway lighting standards. Transportation agencies must obtain 

answers for two questions in their decision-making for lighting infrastructure management: 

Which segments/zones do not meet lighting maintenance standards, and which segments/zones 

have significant nighttime safety risks caused by poor lighting patterns and what is the risk 

degree? To answer the questions, periodic lighting level monitoring on a large-scale roadway 

network is needed.  

1.2 Photometric Measures  

Multiple photometric measures are adopted to measure street lighting levels in street lighting 

design and maintenance. The most common measure is illuminance that is the amount of light 

falling onto a surface. Illuminance could be measured as lumens per unit area either in foot-

candles (lumens/ft2) or in lux (lumens/m2) (FHWA, 2012). As illuminance is independent of the 

retroflection characteristics of roadway surface, it is simple to measure and calculate. Two major 

illuminance metrics are used: 

• Horizontal illuminance is measured at a horizontal surface six inches above the ground. 

This metric is related to the visibility of general objects, such as vehicles, obstacles, etc.  

• Vertical illuminance is measured at a vertical surface height of five feet above the 

ground, which is a commonly criteria for the height of pedestrians’ face. This metric 

represents the visibility of pedestrians. 

Many factors influence driver vision when driving at night. From the photometric perspective, 

contrast and glare are two major factors. The contrast of an object is the luminance and color 

difference of the object from its background. High contrast of an object means that drivers can 

more easily detect the object. The function of street lighting is to produce sufficient luminance 

contrast of an object on a road that exceeds the requirement by drivers for detecting it. Glare is 

the eye adaption level affected by nonuniform lighting sources, especially bright ones. A long 

adaption procedure caused by nonuniformities in the visual field reduces driver vision for 

detecting objects and may result in collisions. A good design of a street lighting system can 

provide a uniform visual environment for drivers and reduce the risk of glare.  

To assess the photometric performance of street lighting, two major metrics are used. Average 

illuminance is defined as the arithmetic mean of illuminance on a roadway facility. This metric 

represents the average lighting level of the roadway facility; a high average illuminance value 

indicates that the visual condition of the roadway facility is brighter, and the contrast of objects 

is sufficient. Meanwhile, max-min ratio (maximum illuminance ÷ minimum illuminance) or avg-

min ratio (average illuminance ÷ minimum illuminance) are used to scale the uniformity of a 

street lighting system. Ratio metrics closing to 1 designates that the luminance distribution on a 

roadway facility is uniform and the risk of glare is small. As shown in Table 1, average 

illuminance (for both horizontal and vertical) and illuminance ratios have different requirements 

by various roadway functional classifications in street lighting design.  
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1.3 Advanced Lighting Measurement System (ALMS) 

The conventional method for measuring roadway illumination involves spot-checking along a 

grid set up on a selected road. Measurements are taken using a light meter placed six inches 

above the ground. The operator must set up the light meter, then stand back and trigger a 

measurement. The light meter is then moved to the next point on the grid, and the process is 

repeated.  

This method is both time-consuming and dangerous. It is a lengthy process for the operator to set 

up the collection device in the roadway, step back, and record a reading. This also makes the 

operator and the testing equipment vulnerable to the dangers of the road for prolonged periods of 

time. This danger can be avoided with lane closures and police presence but doing so adds cost 

to the measurement process; it is estimated that a one-mile measurement costs around $5,000. In 

addition, human error may reduce the accuracy and reliability of lighting data. Due to these 

factors, extended roadway illumination studies are rarely implemented, leaving questions on 

whether roadways meet sufficient lighting standards.  

 

Figure 1. Conventional Lighting Data Measurement 

Adequate and accurate lighting data from periodical lighting monitoring are the basis for 

supporting such decision-making. To overcome the defects of conventional lighting 

measurement methods, an innovative lighting measurement technology, the Advanced Lighting 

Measurement System (ALMS), was developed the University of South Florida (Johnson et al., 

2014). The ALMS, as shown in Figure 2, is powered by a microcontroller that connects to two 

lighting meters (Konica Minolta T-10A). A Distance Measurement Instrument (DMI) reads 

accurate distance information from the vehicle’s on-board diagnostics (OBD) bus and triggers 

the microcontroller reading lighting meters at a given distance interval. Compared to the 

conventional method, the ALMS has the following advantages: 
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• Can read two illuminance points per 10 ft per lane, and the high-resolution lighting data 

can describe the lighting pattern of a roadway facility more accurately. Figure 3 presents 

an example of horizontal illuminance data in foot-candles at a signalized intersection 

using the ALMS. 

• Can be operated at a high speed (≥ 30 mph) in fully automatic method, operating cost is 

much lower than the conventional method ($300 vs $5,000). The high operating speed 

and low cost allow periodic lighting data collection in a big-scale roadway network. 

• Fully eliminates operator exposure in traffic and human error in operations; provides 

highly accurate and reliable lighting data. 

 

Figure 2. Advanced Lighting Measurement System (ALMS) 

 

Figure 3. Examples of Horizontal Illuminance Data Collected by ALMS 
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Researchers have used the ALMS to collect horizontal lighting data for 300+ centerline miles in 

the Tampa Bay areas since 2012, with accumulated lighting points exceeding millions and 

covering the major corridors in the area, as shown in Figure 4. The big data produced from the 

ALMS bring opportunities to deeply analyze lighting performance and improve nighttime safety. 

 

Figure 4. Lighting Data Measurement in Tampa Bay using ALMS 

1.4 Safety Performance of Street Lighting  

The safety performance of street lighting has been documented in many reports and publications. 

Most studies considered street lighting as a binary factor (presence or not; before and after 

improvement) at intersections (Bruneau and Morin, 2005; Bullough et al., 2013; Donnell et al., 

2010; Elvik, 1995; Isebrands et al., 2006; Kim and Washington, 2006; Preston and Schoenecker, 

1999), roadway segments (Anarkooli and Hadji Hosseinlou, 2016; Wanvik, 2009; Yu et al., 

2015; Zhang et al., 2012), or both (Monsere and Fischer, 2008; Sullivan and Flannagan, 2002). 

These studies all led to the conclusion that the presence of roadway lighting significantly 

improves nighttime safety in terms of reduction of nighttime crash rate/frequency, injury 

severity, and night-day crash ratio.  

Some efforts, as summarized in Table 2, investigated the relationship between nighttime crash 

risk and lighting photometric measures (e.g., illuminance, luminance, uniformity) or visibility 

indicators (e.g., Small Target Visibility) rather than street lighting presence or improvement on 

roadway segments and at intersections.  
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Table 2.Summary of Previous Studies on Safety Performance  

of Street Lighting Photometric Measurers 

Study 
Roadway 

Facility 

Photometric 

Measures 

Safety 

Measure 
Major Conclusions 

Box  

(1971) 

Freeway Horizontal 

illuminance 

Night-to-

day crash 

rate ratio 

Freeways with horizontal illumination levels 

of 0.3–0.6 fc had best night-to-day accident 

rate ratios. 

Box  

(1976) 

Arterial Horizontal 

illuminance 

Crash 

frequency 

Nighttime crash frequency increased by 

10% with decrease in horizontal illuminance 

from 14 lx to 9 lx. 

Janoff  

et al. 

(1978) 

Urban 

roadway 

segments 

Horizontal 

luminance 

Crash rate • Crash rate decreases with increase in 

visibility level. 

• Higher illumination levels related to 

higher crash frequency. 

Scott 

(1980) 

Roadway 

segments 

Horizontal 

luminance, 

surrounding 

luminance,  

 overall 

uniformity, 

horizontal 

illuminance, 

vertical 

Illuminance 

Night-to-

day crash 

ratio 

• Clear relationships between nighttime 

crash risk and measures of lighting 

quality. 

• Average horizontal luminance (𝐿̅) 

superior to surround luminance and 

horizontal/vertical illuminance to fit 

crash data. 

• In range 0.5–2.0 cd/m2, increase of 1 

cd/m2 in luminance associated with 35% 

lower night-to-day crash ratio (
𝑁

𝐷
). Best-

fitting relationship is 
𝑁

𝐷
= 0.66𝑒−0.42𝐿̅. 

• Overall uniformity (max/min) and 

homogeneity of luminance have no 

proved relationship with nighttime crash 

risk.  

Mace 

(1997) 

Urban and 

suburban 

freeways, 

arterials,  

divided 

roadways 

Horizontal 

illuminance, 

luminance, 

small target 

visibility 

(STV) 

Night-to-

day crash 

and crash 

cost ratios 

• Less uniformity resulted in higher 

night/day crash rates.  

• Influence of STV and light level on 

night/day crash ratios confounded with 

glare.  

• Data did not support conclusion that 

increases in illumination are more likely 

to reduce crashes than increases in 

visibility. 

Keck 

(2001) 

Urban and 

suburban 

freeways, 

arterials,  

divided 

roadways 

Horizontal 

illuminance, 

luminance, 

small target 

visibility 

(STV) 

Night-to-

day crash 

ratio 

• Evaluation of visibility of real roadway 

objects needs include joint effects of both 

vehicle headlights and fixed street 

lighting system. 

• No evidence to support correlation 

between night-to-day crash ratio and 

street lighting measures.  
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Zhao  

et al. 

(2015) 

Urban 

arterial 

Horizontal 

illuminance, 

Uniformity 

Night-to-

day crash 

rate 

difference 

• Horizontal illuminance along corridor 

complies with lognormal distribution.  

• Mean and standard variance of horizontal 

illuminance proposed to replace 

traditional measures for average lighting 

level and uniformity. 

• Illuminance parameters significantly 

related to difference between daytime and 

nighttime crash rates. 

Wang et al. 

(2017) 

Roadway 

segment 

Horizontal 

illuminance, 

Uniformity 

Expected 

night-to-

day ratio 

• Increase in mean horizontal illuminance 

significantly decreases expected night-to-

day crash ratio. 

• Crash reduction factor for mean of 

illuminance (x) estimated as 

(𝑥 baseline⁄ )−0.0773 × 100%. 

• Good illuminance uniformity (max/min < 

6) significantly reduces expected night-to-

day crash ratio by 2.3%. 

Bhagavath-

ula et al. 

(2015) 

Rural 

intersection 

Horizontal 

illuminance 

Night-to-

day crash 

ratio 

• Lighting level significantly impacts night-

to-day crash ratio at rural intersections. 

• Increase of 1 lx in average horizontal 

illuminance corresponded to 7% decrease 

in night-to-day crash ratio.  

• For lighted intersections, night-to-day 

ratio decrease is 9%; for unlighted 

intersections, night-to-day ratio decrease 

is 21%. 

Edwards 

(2015) 

Rural 

intersection 

Horizontal 

illuminance 

Night-to-

day crash 

ratio 

• 1-lux (≈ 0.1 fc) increase in average 

lighting (3.91 lux) reduced nighttime 

crash rate by 9% in Minnesota.  

• At lighted intersections, a one-lux 

increase in average lighting (6.41 lux) 

reduced crashes by 20%. 

• At unlighted intersections, a one-lux 

increase in average lighting (0.2 lux) 

reduced nighttime crash ratios by 94%. 

Wei et 

al.(2016) 

Urban 

intersection 

Horizontal 

illuminance 

Expected 

night-to-

day crash 

ratio 

• Increasing intersection illuminance from 

low (< 0.2 fc) to medium (≥ 0.2 fc and 

<1.1 fc) can reduce nighttime crash 

frequency and night-to-day crash ratio by 

approximately 50%. 

• Illuminance kept at 0.9 fc or higher, risk 

of fatality and severe injury significantly 

decreases, especially for 

pedestrian/bicycle, head-on, and angle 

crashes.  

Bhagavath-

ula et al. 

(2018) 

Rural 

intersection 

Horizontal 

illuminance 

 • Visual performance of driver plateaued 

between 7 and 10 lx of mean intersection 

illuminance. 
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Xu et al. 

(2018) 

Access 

points 

Horizontal 

illuminance 

Speed 

variance, 

Crash rate 

• Improved illuminance can decrease speed 

variation among vehicles and improve 

safety levels. 

• High-grade highways need better 

illuminance at access points. 

Yang et al.  

(2019) 

Roadway 

segment 

Mean and 

standard 

deviation of 

horizontal 

illuminance 

Nighttime 

crash 

frequency 

and daytime 

crash 

frequency 

• Horizontal illuminance characteristics 

have a significant impact on nighttime 

crash risk on roadway segments.  

• An increase in the mean of horizontal 

illuminance, indicating an improvement in 

average lighting level, tends to decrease 

nighttime crash risk; an increase in the 

standard deviation, representing a poor 

uniformity of lighting pattern on a 

roadway segment, is more likely to raise 

nighttime crash risk.  

• Because the two measures are strongly 

correlated in a low mean range (<0.44 fc), 

the two photometric measures need to be 

considered together to interpret the safety 

effects of lighting patterns.  

• The standard deviation shows better 

performance in measuring lighting 

uniformity on a roadway segment than the 

traditional ratios (max-to-min and mean-

to-min). 

1.5 Research Objectives 

The “big” lighting data produced from ALMS bring opportunities to regularly monitor roadway 

lighting systems and deeply analyze lighting performance and challenges in data processing and 

analysis. First, existing lighting analysis tools focus on roadway lighting design rather than 

analysis of measured lighting data; there are no standard methods and computer tools to process 

measured big lighting data for decision-making support. Second, many studies have explored the 

connection between nighttime crash risk and lighting photometric measures; however, these 

photometric studies used simple lighting measures statistics (e.g., mean of illuminance/ 

luminance and ratio-based uniformity) that cannot use the full information of lighting data and 

capture the “true” lighting patterns that influence driver nighttime vision, consequently 

contributing to nighttime crash risks (Wang et al., 2019). Traditional models are not appropriate 

for analyzing big lighting data on disaggregate zones. Upgrading or maintaining lighting systems 

on disaggregate zones with high nighttime risks can better identify nighttime risks related to 

lighting patterns and more effectively allocate maintenance budgets. Thus, it is necessary to 

develop innovative methods to diagnose lighting system performance based on high-resolution 

lighting data and provide decision-making support in roadway lighting management and 

maintenance. 

The major goal of the proposed project was to develop innovative methods and tools that 

automatically and intelligently diagnose roadway lighting performance based on big lighting data 
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collected using the ALMS. The diagnosis results can provide decision-making support in 

roadway lighting system maintenance and management to improve nighttime safety and security. 

More specifically, the research objectives were as follows: 

• Develop diagnosis algorithms that can effectively recognize lighting patterns and identify 

zones with poor lighting performance (e.g., do not meet standards). 

• Develop machine learning models to automatically extract features from lighting patterns 

and precisely predict nighttime crash risk associated with given lighting patterns and 

other factors.  

• Develop a prototype of computer tools for automatically processing and analyzing 

collected lighting data, including data mapping and pre-processing, intelligent diagnosis, 

nighttime risk assessment, and data visualization. The expected technology readiness 

level (TRL) is Level 7: Prototype demonstrated in operational environment. 

• Implement the developed tools using Florida Department of Transportation (FDOT) 

lighting measurement projects as case studies.  
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Chapter 2: Tool Development 
 

2.1 System Architecture 

The system architecture of the Automated Roadway Lighting Diagnosis System is shown in 

Figure 5. The system consists of four modules: 

• Data Mapping and Inventorying – Imports raw lighting data from the ALMS data logger 

and map the data into ArcGIS layers. Besides the GIS coordinates, the roadway ID and 

milepost are produced for each lighting data item using the Linear Reference function of 

ArcGIS Pro. The mapped lighting data are stored in a geographic database. 

• Lighting Pattern Recognition – Analyzes the lighting data for a roadway facility (i.e., 

segment or intersection) and identifies the sub-sections for which their lighting patterns 

do not meet FDOT standards. The lighting pattern diagnosis uses a machine learning 

algorithm developed in this study; details of the algorithm are provided in Chapter 3. 

• Risk Prediction – Predicts the nighttime risk for a roadway facility with lighting data, 

traffic data, geometric data, and historical crash data. The Safety Performance Functions 

(SPF) and Empirical Bayesian (EB) model are used to predict the crash risk; their 

descriptions are provided in Chapter 3.  

• Data Visualization – Presents the results of pattern diagnosis and crash risk prediction. 

Presentation methods include GIS maps, heat-maps, statistics, and figures.  

ALMS

Lighting Database

Geometric Data
Traffic Data

Historical Crash Data

Data Mapping and 
Inventorying

GIS Database

GIS Map

Statistics

Formatted 
Report

Pattern 
Recognition

Risk Prediction

Data 
Visualization

Automated Roadway Lighting Diagnosis System

 

Figure 5. System Architecture of Automated Roadway Lighting Diagnosis System 

2.2 System Development 

The lighting diagnosis tools were designed to work on a web-GIS platform, as users can easily 

access the tools with a modern web browser (i.e., Google Chrome, Firefox, MS Edge) using a 
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variety of devices (i.e., PC, Mac, tablets, mobile phones). The research team developed the tools 

based on the ESRI solution with the University of South Florida (USF) academic license. The 

tools and technologies for system development are summarized in Table 3. 

Table 3. Summary of Environment & Technologies for Development 

System Component Tool/Technology 

Deployment – Server Side 

Web Server MS IIS 8.5 on Windows Server 2012 R2 

GIS Server ArcGIS Server 10.8 

GIS Service Customized geoprocessing service 

Execute Mode Asynchronous 

Deployment – Client Side 

Device Any device with an Internet connection 

Software Modern browsers 

Development – Server Side 

Development/Testing Platform ArcGIS Pro 

Language Python 

Library ArcPy, NumPy, Pandas 

Development – Client Side 

Development/Testing Platform MS Visual Studio Code 

Language JavaScript 

Library ArcGIS API for JavaScript 4.15, UIkit, Chart.js 

2.3 System Functions 

The system provides various functions to satisfy user needs in lighting data analysis. Users can 

access the functions through a web-GIS interface hosted on a CUTR server at  

http://its.cutr.usf.edu/lita. The major functions are summarized in Table 4.  

  

http://its.cutr.usf.edu/lita
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Table 4. Summary of Major Functions 

Function Subject Description 

User Interface 

Display layer 

• Signal 

• Segment 

• Crash 

• Display subjects with lighting data on maps 

• Filter subjects by location, time, or type 

Base-map  
• Provide 24 base-maps 

• Flexible to switch base-maps  

Selection 

• Signal 

• Segment 

• Crash 

• Specify subjects for analysis 

• Interactive selection on map 

Clip • Segment 
• Specify a sub-section of a segment for analysis 

• Interactive selection on map  

Split • Segment 
• Manually split a segment into multiple sub-sections for analysis 

• Interactive selection on map 

Segmentation • Segment 

• Automatically split a segment into multiple sub-sections for 

analysis 

• By uniformed length 

• By the similarity of lighting patterns 

Analysis 

Lighting 

diagnosis 

• Signal 

• Segment 

• Crash 

• Calculate photometric statistics for selected subjects 

− Mean, Max/Min, Avg/Min 

− Customized buffer size 

• Display histogram charts for photometric values  

Risk prediction 
• Signal 

• Segment 

• Predict nighttime crash risk (frequency) for selected subjects 

• Using EB model and SPFs 

• Input variables: lighting data, AADT, geometry, traffic control, 

and historical crash frequency 

• Display prediction results in table and figure 

Heat-map 

• Signal 

• Segment 

• Crash 

• Display heat-maps of photometric data for selected subjects on 

maps 

• Intuitive presentation of lighting patterns 

 

2.4 Data Inventory 

The system maps ALMS data into GIS layers, which can be joined with other data (Annual 

Average Daily Traffic [AADT], geometry, crash, etc.) for analysis. All data are stored on the 

ArcGIS server in GIS formats. The map and geoprocessing services retrieve the data via the 

ArcPy library. Table 5 presents the data inventory used in the system.  

  



14 

 

 

 

 

Table 5. Data Inventory in Automated Roadway Lighting Diagnosis System 

Data Item Format Description 

Lighting Data Layer 

FC Float • Measured horizontal illuminance (foot-candle) at vehicle height 

FC_6 Float • Converted horizontal illuminance at 6-in. above ground 

Coordinates Float • GIS coordinates (X, Y) 

Roadway ID Integer 
• Unique number to identify a roadway segment in FDOT 

Roadway Characteristics Inventory (RCI) database  

Milepost Float • Number to measure distance to a reference point 

Date/Time Integer • Data collection year, date, time 

Segment Layer 

Number of Lanes Integer • Number of through lanes 

Area Type Indicator • Urban or not 

Roadway Type Indicator • Divided or undivided 

Access Points Integer • Number of intersections and driveways 

AADT Integer • Average Annual Daily Traffic by year 

T-Factor Float • Percentage of truck volume by year 

Intersection Layer 

AADT1 Integer • AADT on Street 1 

AADT2 Integer • AADT on Street 2 

Intersection Type Indicator • Four-leg or three-leg 

Crash Layer 

Year Integer • Crash year (2017–2019) 

Severity Indicator 
• Fatal, incapacitating injury, non-incapacitating injury, possible 

injury, PDO 

Crash Type Indicator • Rear-end, angle, pedestrian, … 

Location Integer/Float • Roadway ID, milepost, coordinates 
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Chapter 3: Model Development 

3.1 Lighting Diagnosis Model 

3.1.1 Problem Statement 

In street lighting management, engineers usually diagnose a street lighting system by reviewing 

photometric statistics on a roadway facility. If the photometric statistics cannot satisfy the DOT 

standards, shown in Table 5, the lighting system may need to be maintained or upgraded. The 

system provides the functions to calculate photometric statistics, such as mean of horizontal 

illuminance, standard deviation of horizontal illuminance, max-min ratio, avg-min ratio, and 

histogram, for a selected roadway facility. The functions work well for a small-size entity, such 

as intersections or short roadway segments; however, they cannot account for the diversity of 

lighting patterns on a long road segment.  

Figure 6 is an example of illuminance distribution along a roadway segment, showing that the 

lighting level of the left section is higher than that of the right section. The photometric statistics 

of the whole segment cannot accurately describe the lighting pattern of segment. The mean of 

illuminance (0.85 fc), max-min ratio (14.19), and avg-min ratio (8.54) are all higher than the 

DOT lighting criteria (1.0 fc, 10, and 4, respectively). The statistics derive a conclusion that the 

lighting level of the whole segment does not meet DOT standards. However, the lighting 

statistics on the left section are 1.05 fc (mean), 3.48 (avg-min ratio), and 4.65 (max-min ratio), 

indicating that the left section does meet DOT standards. Comparatively, the right section (mean 

of 0.75 fc, max-min ratio of 14.19, and avg-min ratio of 7.52) does not meet the standards. In 

practice, engineers would expect to identify the right section for lighting maintenance or upgrade 

and exclude the left section.  

Left Section Right Section

 

Figure 6. Example of Diverse Lighting Patterns along a Roadway Segment 

The system provides functions of clip and segmentation. With these functions, users can 

manually split the whole segment into sub-sections (such as left and right). An intelligent 

diagnosis function that automatically identifies sub-sections that do not meet DOT standards is 

expected to improve lighting diagnosis efficiency and accuracy.  
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3.1.2 Automatic Segmentation Algorithm 

A machine learning model was developed to automatically split the whole roadway segment into 

sub-sections. Each sub-section has similar photometric performance (either mean of illuminance 

or ratio-based uniformity measure), but the photometric measures of neighboring sections are 

different. The automatic segmentation model, as shown in Figure 7, adopts the hierarchical 

clustering algorithm that iteratively combines two neighboring sections based on their similarity 

of photometric measures. The details of important terms are interpreted as follows: 

• Parameters – To provide flexibility for different situations, the algorithm has four 

parameters. Users can specify parameters based on their needs and get an optimal 

diagnosis result. The parameters are summarized in Table 6. 

Table 6. Parameters for Automatic Segmentation Algorithm 

Parameter Description Default Value 

Photometric 

Measure 

User specifies photometric measure to calculate similarity 

(distance) between two neighboring sections. Measure 

could be mean, standard deviation, max-min ratio, or avg-

min ratio. 

n/a 

Initial Length 

Whole segment is split into small sections based on initial 

section length; shorter initial length may recognize small 

sections with different lighting patterns from neighboring 

sections but may increase calculation time.  

0.003 miles 

Label Range 

Label used to identify similarity in photometric measures 

of neighboring sections. Two neighboring sections falling 

into a category (label) are treated as similar sites and can be 

merged into one section. More labels levels can increase 

the resolution of lighting pattern diagnosis; however, more 

label levels may result in fragmentation.  

[0, 0.5, 1, 1.5, 2, 

>2] for mean of 

horizontal 

illuminance 

Minimum Length 

Minimum length used as stopping criteria. Length of final 

sections required to be greater or equal to minimum length. 

Setting used to avoid issue of fragmentation.  

0.135 miles 

• Similarity – The absolute difference of photometric measures between two neighboring 

sections is an indicator of the similarity of the sections. The “closest” section pair is 

defined as two neighboring sections with the smallest difference of photometric 

measures.  

• Block – If two neighboring sections have different label levels and both satisfy the 

minimum length, the two sections are indicated as an unsimilar pair (blocked). The 

algorithm ignores “blocked” section pairs in iterations.  
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Start

Section Initialization

▪ Split whole segment into small sections 

with initial length

▪ Set all neighboring sections as 

 unblocked 

Measure Calculation

▪ Calculate photometric measures for 

each section

▪ Calculate the difference of photometric 

measures for each neighboring section 

pair

Parameter Input

▪ Photometric measure (mean or 

uniformity)

▪ Initial section length

▪ Label range

▪ Minimum section length

Pair Identification
Identify the  closest  section-pair that two 

 unblocked  neighboring sections with the 

most similar photometric measure values.

Satisfy Merge 

Criterion?

▪ If the two neighboring sections have the 

same label, then merge

▪ If the two neighboring sections have 

different label and either of them cannot 

satisfy the minimum length, then mege

Satisfy Stopping 

Criterion?

▪ Each section length is greater than the 

minimum length, and

▪ All neighboring sections has different 

labels

Merge

Yes

▪ Combine the neighboring sections as 

one section

▪ Recalculate photometric measure for 

the combined section

Output

Yes

Set the Pair as 

 Blocked 

No

▪ Calculate photometric statistics for each 

section

▪ Compare photometric statistics of each 

section with DOT standards

▪ Output diagnosis results (meet or not) 

for each section

End
 

Figure 7. Flow Chart of Automatic Segmentation Algorithm 
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3.1.3 Example of Automatic Lighting Diagnosis Algorithm 

An example is used to explain the automatic lighting diagnosis algorithm. Assuming that lighting 

data are collected at a roadway segment of 0.5 miles, the parameter inputs include the following: 

• Mean of illuminance is selected as photometric measure for analysis. 

• Initial section length is 0.1 miles. 

• Label range is 1 – [0 fc, 0.5 fc), 2 – [0.5 fc, 1 fc), 3 – [1 fc, 1.5fc), 4 – [1.5 fc, ∞). 

• Minimum length is 0.2 miles. 

Based on the parameter inputs, the automatic lighting diagnosis procedure is as follows: 

• Iteration 1 – The whole segment is splatted into five sections based on the initial length 

(0.1 miles), and the mean of illuminance for each section is calculated. Based on the 

calculated mean, a label is assigned to each section. For example, Section 1 is labeled as 

3 because its mean of illuminance is 1.17 falling in [1 fc, 1.5 fc). Meanwhile, the distance 

(the difference of illuminance mean) between two neighboring sections is calculated. 

Section 2 and Section 3 are identified the “closest” pair, as they have the smallest 

distance (0.1 fc). The pair satisfies the merging criteria: two neighboring sections have 

the same label (2). Thus, the two sections are merged into a single section.  

Section Length (miles) Label Mean of Illuminance (fc) Similarity* 

1 0.1 3 1.17 - 

2 0.1 2 0.86 0.31 

3 0.1 2 0.76 0.10 

4 0.1 1 0.32 0.44 

5 0.1 2 0.54 0.22 
* Mean of Illuminance for Sectioni - Mean of Illuminance for Sectioni-1  

• Iteration 2 – The mean of illuminance is recalculated for the new section (Section 2) that 

combines Section 2 and Section 3 in Iteration 1. Section 2 is labeled as 2 because its 

mean of illuminance is 0.81 fc. Meanwhile, the distance between any two neighboring 

sections is recalculated. Section 3 and Section 4 are identified the “closest” pair, as they 

have the smallest distance (0.22 fc). The “closest” pair satisfies the merging criteria: if 

two neighboring sections have the different label (1 vs 2), but either of them is shorter 

than the minimum length (0.2 miles). Thus, the two sections are merged into a single 

section.  

Section Length (miles) Label 
Mean of Illuminance 

(fc) 
Similarity 

1 0.1 3 1.17 - 

2 0.2 2 0.81 0.36 

3 0.1 1 0.32 0.49 

4 0.1 2 0.54 0.22 

• Iteration 3 – The mean of illuminance is recalculated for the new section (Section 3) that 

combines Section 3 and Section 4 in Iteration 2. Section 3 is labeled as 1 because its 

mean of illuminance is 0.43 fc. Meanwhile, the distance between any two neighboring 

sections is recalculated. Section 1 and Section 2 are identified the “closest” pair since 
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they have the smallest distance (0.36 fc). The “closest” pair satisfies the merging criteria: 

if two neighboring sections have the different label (3 vs 2), but either of them is shorter 

than the minimum length (0.2 miles). Thus, the two sections are merged into a single 

section.  

Section Length (miles) Label 
Mean of Illuminance 

(fc) 
Similarity 

1 0.1 3 1.17 - 

2 0.2 2 0.81 0.36 

3 0.2 1 0.43 0.38 

• Iteration 4 – The mean of illuminance is re-calculated for the new section (Section 1) that 

combines Section 1 and Section 2 in Iteration 3. Section 1 is labeled as 2 because its mean 

of illuminance is 0.93 fc. Meanwhile, the distance between two neighboring sections is 

recalculated. All neighboring sections have different labels, and each section reaches the 

minimum length. Thus, the iteration stops.  

Section Length (miles) Label Mean of Illuminance (fc) Similarity 

1 0.3 2 0.93 - 

2 0.2 1 0.43 0.56 

The mean of illuminance for Section 1 is 0.93 fc, which is close to the DOT standard (1.0 fc). 

However, the measure for Section 2 is 0.43 is much lower than the DOT standard (0.43 fc). 

Thus, Section 2 should be put in the priority list for upgrading and maintaining. 

3.2 Crash Risk Prediction Model for Roadway Corridor 

3.2.1 Safety Performance Function 

A Safety Performance Function (SPF) developed in a previous study (Yang et al., 2019a) was 

used to evaluate the nighttime crash risk. The SPF adopts the Random Parameter Negative 

Binominal technology to predict the nighttime crash frequency, given lighting photometric 

measures (mean and standard deviation), traffic conditions (AADT and truck percentage), 

roadway type (divided or not), area type (urban or rural), access density, and segment length. 

The SPF equation is given below: 

 

𝜇 =  exp (−4.969 − 0.42 ∙ 𝑀 + 0.769 ∙ 𝑆 + 0.526 ∙ 𝐿𝑁(𝐴𝐴𝐷𝑇) 
+ 0.236 ∙ 𝐻𝑉 + 1.161 ∙ 𝐿 + 0.036 ∙  𝐴𝐶𝐶𝐸𝑆𝑆 
+ 0.456 ∙ 𝑈𝑁𝐷𝐼𝑉𝐼𝐷𝐸𝐷 + 0.283 ∙ 𝑈𝑅𝐵𝐴𝑁) 

(1) 

where  𝜇 – predicted nighttime crash frequency (per four years) 

 𝑀 – mean of horizontal illuminance (fc) 

 𝑆 – standard deviation of horizontal illuminance 

 𝐿𝑁(𝐴𝐴𝐷𝑇) – natural logarithm of AADT 

 𝐻𝑉 – heavy vehicle indicator (1 – if heavy vehicle percentage > 3%, 0 – otherwise) 

 𝐿 – segment length in miles 
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 𝐴𝐶𝐶𝐸𝑆𝑆 – access density (number of access points per mile) 

 𝑈𝑁𝐷𝐼𝑉𝐼𝐷𝐸𝐷 – undivided road indicator (1 – if roadway is undivided, 0 – otherwise) 

 𝑈𝑅𝐵𝐴𝑁 – urban road indicator (1 – segment is located inside urban limits but not inside 

city limits, 0 – otherwise) 

An Empirical Bayesian (EB) model is applied to provide more reliable inference for nighttime 

crash risk at a given corridor. The EB model, which is a standard method define in the Highway 

Safety Manual (HSM), combines the crash risk information from the SPF and from local 

historical crash data. The EB model is described below: 

 

𝑁𝑒 =  𝑤 × 𝑁𝑝 + (1 − 𝑤) × 𝑁𝑜 

𝑤 =  
1

1 + 𝑁𝑝
′ × 𝑌 ÷ 𝜙

 
(2) 

 where 𝑁𝑒 – expected nighttime crash frequency (per year) 

 𝑁𝑝 – predicted nighttime crash frequency (per year) by SPF, =
𝜇

4
 

 𝑁𝑜 – average historical crash frequency (per year) 

 𝑤 – weighting factor 

 𝑁𝑝
′  – predicted crash frequency (per year) for unit length (one mile), =

𝑁𝑝

𝐿
 

 𝑌 – number of years for historical crash data collection 

 𝜙 – overdispersion parameter estimated in SPF development, = 3.604  

The expected nighttime crash frequency (𝑁𝑒) represents the expected nighttime risk of a road 

segment under prevailing lighting, traffic, and roadway conditions. In addition, the probability 

(risk) of different nighttime crash number is calculated by: 

 𝑃(𝑁) =  
Γ(𝜙 + 𝑁)

Γ(𝜙) ∙ 𝑁
(

𝜙

𝜙 + 𝑁𝑒
)

𝜙

(
𝑁𝑒

𝜙 + 𝑁𝑒
)

𝑁

 (3) 

where 𝑃(𝑁) – probability of 𝑁 nighttime crashes occurring 

 Γ() – Gamma function 

3.2.2 Implementation of Crash Risk Prediction Model 

The crash risk prediction model (SPF and EB model) was coded as an ArcGIS Geoprocessing 

Tool (risk prediction module) in the system. The module retrieves crashes, lighting, traffic, and 

geometry data from the system databases and display the prediction results on web. The flow 

chart of crash risk prediction model is shown in Figure 8. 
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Figure 8. Flow Chart for Crash Risk Prediction 
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3.3 Crash Modification Factors for Street Lighting Photometric Measures 

3.3.1 Problem Statement 

Crash modification factors (CMFs) are a measure used to evaluate the safety performance of a 

treatment in crash reduction. Usually, it is necessary to isolate the effect of a factor of interests 

from other contributing factors. Lighting safety studies were based on cross-sectional 

observation data, as it was difficult to collect lighting photometric data in street lighting 

improvement projects for before-after studies. Street lighting photometrics, including street 

lighting uniformity, are associated with many confounding factors; for example, transportation 

agencies usually require high lighting levels on major roads that serve high traffic volume. Thus, 

AADT is a typical confounder connecting both street lighting level and uniformity and nighttime 

crash frequency. Observational cross-sectional studies without any control on confounding 

factors may lead to counterintuitive conclusions such as high lighting level associated with high 

nighttime crash frequency (Janoff et al., 1978; Wei et al., 2016) or no association between street 

lighting level and nighttime crashes (Keck, 2001). Night-to-day crash ratios were widely used in 

previous studies (Box, 1971; Keck, 2001; Scott, 1980; Wang et al., 2017; Zhao et al., 2015) to 

exclude the unnecessary influence of factors that impact both nighttime and daytime crashes 

(e.g., roadway maintenance quality, functional class, etc.) at the same sites. However, night-to-

day ratios cannot address confounders that connect nighttime crashes only. For instance, the 

standard deviation of illuminance (a measurement of uniformity) tends to increase with a high 

mean of illuminance in lighting data samples. Both variables significantly influence driver 

detection ability at night and, consequently, contribute to nighttime crashes but not daytime 

crashes. Night-to-day ratios cannot control the influence from the illuminance mean when 

examining the safety effect of the standard deviation of illuminance, or vice versa. 

The primary objective of this study was to investigate the safety effects of street lighting 

uniformity on nighttime crash occurrence on roadway segments. A matched case-control method 

was used to address the critical issues in cross-sectional street lighting data. CMFs of uniformity 

were developed for roadway segments.  

3.3.2 Matched Case-Control Study 

A matched case-control study is commonly used in epidemiology to quantify the risk of disease 

given certain characteristics related to an individual (Schlesselman, 1982). It has been used 

recently in the highway safety field to investigate the risk of vehicle crashes given certain 

characteristics related to a roadway entity (Abdel-Aty et al., 2004; Davis et al., 2006; Gross, 

2013; Gross and Donnell, 2011; Gross and Jovanis, 2007). Unlike a cross-sectional study that 

proceeds from cause to effect—although a matched case-control study is based on cross-

sectional data—this method adopts an opposite procedure (from effect to cause), attempting to 

identify pre-condition factors contributing to the outcomes (crashes). The basic steps of a 

matched case-control study are illustrated as follows: 

• Step 1 – Defining: Roadway entities are split into two groups: 1) case – an entity 

(roadway segment) that experienced at least one crash in a given period, and 2) control – 

an entity (roadway segment) that did not experience a crash in the same period.  
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• Step 2 – Matching: Multiple control entities are randomly matched to each case based on 

the similarity of confounding factors correlated to both the risk factor of interest (e.g., 

lighting photometrics) and the outcome (e.g., nighttime crash). This matching scheme is 

intended to eliminate the biased estimations on the association between the risk factor of 

interest and the outcome through mitigating the disturbance from confounders 

(Schlesselman, 1982). Since it often is impractical to match the exact value for 

confounding variables, a category-matching scheme is usually implemented to stratify 

each variable (stratification) and randomly pair cases and controls that fall into the same 

cell created by the multiple cross-classification. The case-control ratio is constant by the 

minimum ratio of controls to cases among all cross-classification categories.  

• Step 3 – Modeling: The conditional logistic regression model is estimated based on the 

matched case-control pairs to address the relative risk of unmatched risk factors (lighting 

photometrics and other geometric factors) rather than the probability of a crash in terms 

of expected frequency (Gross et al., 2010). 

The matched case-control method has some distinctive features that lead to being more valid to 

infer causality than the cross-sectional study. First, this method adopts a comparison group 

(controls) to support or refute an inference of a cause for any risk factor (Schlesselman, 1982). 

Second, a case-control study is powerful for studying rare events since a pre-specified number of 

cases (roadway entities experiencing nighttime crashes in a given period) enrolled in the study 

can ensure an adequate sample size for analysis (Woodward, 2013). This feature is valuable for 

addressing the issues of excess zero observations in the previous cross-sectional street lighting 

safety studies. Third, a matched design in a matched case-control study can directly control for 

confounding variables (including temporal instability) because each matched stratum has similar 

values for each confounding variable (Schlesselman, 1982). Fourth, matched sampling in a 

matched case-control study leads to a balanced number of cases and controls, which can reduce 

the variance in the parameters of interest (horizontal curve design features) and improve 

statistical efficiency in model estimation (Sahai and Khurshid, 1995). 

A careful design is needed to avoid overmatching and residual confounding that may cause 

biased inference and inefficiency of study. Overmatching may be caused by matching variables 

associated only with or having equal status with either the risk factor of interest or the outcome; 

consequently, the relationship between exposure and outcome will be obscured (Marsh et al., 

2002). In addition, the strong correlation between matching variables may also result in 

overmatching (Schlesselman, 1982). If additional confounders are not controlled or stratification 

of matching variables is too loose, residual confounding that the effects of confounding factors 

could not be eliminated from the risk-outcome effect of interest may result in biased inference 

(Psaty et al., 1999). However, if too many confounders are controlled by matching or 

stratification of matching variables is too tight, the case-control ratio in each matching cell would 

decrease dramatically and reduce the power of analysis (Woodward, 2013), even with 

insufficient controls for matching. In practice, a trade-off analysis of the number of and the 

stratification width for matching variables should be made based on statistical analysis and 

professional knowledge to avoid residual confounding and/or insufficient controls.  
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Let 𝑖 (𝑖 = 1, 2, ⋯ , 𝐼) be an index to represent the matched case-control stratum. In each stratum, 

𝐽 controls are randomly matched to one case based on the similar values of confounding 

variables. Let 𝑗 (𝑗 = 0, 1, 2, ⋯ , 𝐽) be an index to represent the observation record within each 

stratum. Let 𝑘 (𝑘 = 0, 1, 2, ⋯ , 𝐾) be an index to represent the unmatched explanatory 

variable𝑥𝑘. The probability of a binary outcome associated with the unmatched explanatory 

variables for 𝑗𝑡ℎ observation of the 𝑖𝑡ℎ stratum can be given as 

 Pr(𝑦𝑖𝑗 = 1) = 1 {1 + 𝑒𝑥𝑝 [− (𝛼𝑖 + ∑ 𝛽𝑘𝑥𝑖𝑗𝑘

𝐾

𝑘=1

)]}⁄  (4) 

where Pr(𝑦𝑖𝑗 = 1) is the probability that the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ stratum is a case; 𝑥𝑖𝑗 is a 

row vector for 𝑘 unmatched explanatory variables 𝑥𝑖𝑗 = (𝑥𝑖𝑗1, 𝑥𝑖𝑗2, 𝑥𝑖𝑗3, ⋯ , 𝑥𝑖𝑗𝑘); 𝑥𝑖𝑗𝑘 is the 

specific value of 𝑘𝑡ℎ unmatched explanatory variable for 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ stratum; 𝛼𝑖 is 

the stratum-specific interpretation term reflecting the different combination effects of 

confounding variables for different strata; and 𝛽𝑘 is estimated parameters for unmatched 

explanatory variables. 

The conditional likelihood for each stratum 𝑖 is based on the matched case-control design that the 

case is the one with the row vector 𝑥𝑖0 and the controls are those with the other row vectors 

𝑥𝑖𝑗  (𝑗 = 1, 2, ⋯ , 𝐽) for 𝑘 unmatched explanatory variables. Because each observation within the 

stratum shares the same characteristics of the confounding variables, the effects of the 

confounding variables on conditional probability cannot be estimated. The conditional likelihood 

𝐿(𝑌𝑖|𝛽𝑘) of the stratum 𝑖 can be calculated as 

 𝐿(𝑌𝑖|𝛽𝑘) = [1 + ∑ 𝑒𝑥𝑝 (∑ 𝛽𝑘(𝑥𝑖𝑗𝑘

𝐾

𝑘=1

− 𝑥𝑖0𝑘))

𝐽

𝑗=1

]

−1

 (5) 

where 𝑥𝑖0𝑘 is the value of 𝑥𝑘 for a case in the 𝑖𝑡ℎ stratum, and 𝑥𝑖𝑗𝑘 is the value of 𝑥𝑘 for the 𝑗𝑡ℎ 

matched control in the 𝑖𝑡ℎ stratum. Because the strata are assumed to be independent from each 

other, the conditional log-likelihood function 𝐿𝐿(𝑌|𝛽𝑘) over the population of I strata can be 

written as (Schlesselman, 1982) 

 𝐿𝐿(𝑌|𝛽𝑘) = − ∑ 𝑙𝑛

𝐼

𝑖=1

[1 + ∑ 𝑒𝑥𝑝 (∑ 𝛽𝑘(𝑥𝑖𝑗𝑘

𝐾

𝑘=1

− 𝑥𝑖0𝑘))

𝐽

𝑗=1

] (6) 

Because the interpretation term 𝛼𝑖 in the above equation cannot be estimated, the absolute 

probability of crash occurrence cannot be calculated in a matched case-control study. 

Alternatively, the odds ratio is calculated to evaluate the relative effects of unmatched 

explanatory variables on crash occurrence. For a dummy variable, the odds ratio represents the 

odds that a motorcycle crash will occur given a roadway characteristic k (𝑥𝑘 = 1) compared to 
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the odds of crash occurring in the absence of that roadway characteristic (𝑥𝑘 = 0), holding other 

variables constant. The odds ratio for a dummy variable can be written as 

 𝑂𝑅(𝑥𝑘) =
Pr(𝑦𝑖0 = 1|𝑥𝑘 = 1, 𝑍)/[1 − Pr(𝑦𝑖0 = 1|𝑥𝑘 = 1, 𝑍)]

Pr(𝑦𝑖0 = 1|𝑥𝑘 = 0, 𝑍)/[1 − Pr(𝑦𝑖0 = 1|𝑥𝑘 = 0, 𝑍)]
= 𝑒𝑥𝑝(𝛽𝑘) (7) 

where 𝑍 represents the vector of explanatory variables other than 𝑥𝑘, and 𝛽𝑘 is the estimated 

parameter for dummy variable 𝑥𝑘. Based on this definition, the odds ratio can be used as the 

direct estimation of the CMF.  

3.3.3 Case and Control 

In this study, 440 roadway corridors in urban and/or suburban areas with street lighting data were 

identified based on the following criteria: (1) roadway sections between two successive 

signalized intersections, (2) 600 ft or longer, (3) equipped with High Pressure Sodium (HPS) 

light bulbs, and (4) no upgrade on street lighting in past several years. To exclude the influence 

from adjacent signalized intersections, a 250-ft buffer was subtracted from the two ends of the 

roadway corridors.  

The 440 measured corridors were split into 2,440 segments with a uniform length of 1,200 ft. 

Nighttime crash data for 2011–2014 was matched to each segment. Within the 2,444 segments, a 

case was defined as a segment in which at least one nighttime crash occurred, and a control was 

defined as a segment in which no nighttime crashes occurred. It is noted that segment length 

should be carefully determined; a reasonable length cannot be too short or too long. In the former 

case, the ratio of the number of cases to the number of controls would be too small, and zero-

inflated observations would be produced. Therefore, the analysis power would greatly decrease. 

In the latter case, the variation of each risk factor within a segment would be large, whereas each 

risk factor should be the same or similar within the segment; thus, the inference would be biased. 

The segment length of 1,200 ft was used in this study to satisfy the above requirement.  

A segment was allocated as a case or control for each year; thus, it could be a case for one year 

and a control for another year. The detailed number of cases and controls in different years are 

provided in Table 7. The measured street lighting points that fall into the same segment were 

calculated for the illuminance mean, the illuminance standard deviation, and the illuminance 

maximum-minimum ratio (max-min ratio) of the segment. The illuminance standard deviation 

and the max-min ratio were used as two measurements of the illuminance uniformity of the 

segment.  

Table 7. Number of Cases and Controls by Year 

Year Number of Cases Number of Controls Total 

2011 279 332 611 

2012 272 339 611 

2013 301 310 611 

2014 319 292 611 

Total 1,171 1,273 2,444 
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3.3.4 Confounder Matching  

In this study, confounders were defined as variables associated with both the illuminance mean 

and nighttime crashes. The confounders must be controlled so that the effects of illuminance 

mean on nighttime crashes can be isolated and properly addressed. Several variables can be the 

potential confounding variable of the illuminance mean, such as the illuminance standard 

deviation, speed limit, number of lanes, AADT, and max-min ratio. To identify the real 

confounding variables of the mean of illuminance, a Pearson’s correlation test was conducted. 

The correlation matrix is shown in Figure 2. 

 

Figure 9. Explanatory Variable Correlation Matrix 

It is noted that the illuminance mean is moderately and positively correlated with the illuminance 

standard deviation, as indicated by a Pearson’s coefficient of 0.68. The reason is that the 

illuminance standard deviation tends to be smaller when the illuminance mean is close to zero 

given that the horizon illuminance is non-negative data. As the illuminance mean increases, the 

distribution of the horizon illuminance gets wider and, thus, the illuminance standard deviation 

becomes greater. In addition, the significant effects of the illuminance standard deviation on 

nighttime crash risk were confirmed by conducting a negative binomial model. The results 

showed that the illuminance standard deviation was positively associated with the number of 

nighttime crashes, which is consistent with previous studies (Yang et al., 2019b; Zhao et al., 

2015). Therefore, the illuminance standard deviation was defined as a confounder of the 

illuminance mean in this study. 
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Further, the illuminance mean was weakly and positively correlated with the number of lanes and 

AADT, as indicated by a Pearson’s coefficient of 0.33 and 0.34, respectively. Traffic agencies 

usually install high-level lighting systems on high-grade roadways that consist of more traffic lanes 

and bear higher traffic demand. It is noted that the number of lanes and AADT were strongly and 

positively correlated with each other with a Pearson’s coefficient of 0.71, which implies that only 

one of these two variables could be matched to avoid the overmatching issue. In this study, AADT 

was chosen as another confounder in addition to the number of lanes so the confounding effects 

could be properly eliminated and, thus, the residual confounding issue does not happen. The 

significant effects of AADT on nighttime crash risk was also confirmed by conducting a negative 

binomial model. The results showed that AADT was positively associated with the number of 

nighttime crashes, which is consistent with previous studies (Yang et al., 2019b). 

It is impractical to match the illuminance standard deviation and AADT by their exact values. Thus, 

the two confounders were categorized into five levels using the following three steps:  

1. Transform the original data to a normal distribution by calculating square root values. 

2. Estimate the standard deviation after the above transformation. 

3. Categorize the transformed data based on +/- a standard deviation from the mean, as 

illustrated in Figure 10. 

 

Figure 10. Data Categorization 

With these matching categories, controls were randomly matched to cases by a case-control ratio 

of 1:1, which makes the power of design achieve approximately 90% (Woodward, 2013). 

Matched categories and sample sizes for AADT and the illuminance standard deviation are 

shown in Table 8. 

After random matching, 1,046 cases and 1,046 controls were identified for modeling. The 

descriptive statistics of unmatched risk factors for cases and controls are presented in Table 9. 

The matched case-control method indicates the likelihood of a risk factor by assessing where this 

factor is disproportionally distributed between the cases and control. As shown, only 11.6% of 

cases (roadway segments that experienced at least one nighttime crash) had no access points, but 

about 26.6% of controls (roadway segments that experienced no nighttime crashes) had no 

access points. A conditional logistic model was estimated to investigate and quantify the risk 

associated with one of these factors while holding others constant. The estimation results are 

presented and discussed in the following section. 
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Table 8. Matched Categories and Sample Sizes for  

AADT and Illuminance Standard Deviation 

Illuminance 

Standard 

Deviation 

AADT 

Total 
Category 1 

(<7,569) 

Category 2 

(7,569–

19,321) 

Category 3 

(1,9321–

36,481) 

Category 4 

(36,481–

59,049) 

Category 5 

(>59,049) 

Case Control Case Control Case Control Case Control Case Control 

Category 1 

(<0.067) 
10 30 39 73 30 54 44 40 4 0 324 

Category 2 

(0.067–0.240) 
13 3 55 80 24 31 13 10 2 1 232 

Category 3 

(0.240–0.518) 
24 24 41 35 166 218 246 218 31 17 1020 

Category 4 

(0.518–0.902) 
44 45 104 97 117 165 146 102 3 1 824 

Category 5 

(>0.902) 
10 26 5 3 0 0 0 0 0 0 44 

Total 101 128 244 288 337 468 445 374 40 19 2,444 

Table 9. Descriptive Statistics of Key Variables in Matched Case-Control Study 

Variable Description 
Case (n = 1,046) Control (n = 1,046) 

Mean SD Mean SD 

Illuminance mean less than 0.5 fc indicator (1 if illuminance 

mean less than 0.5 fc in this segment; 0 otherwise) 
0.371 0.483 0.358 0.480 

Illuminance mean 0.5–1.0 fc indicator (1 if illuminance mean 

0.5–1.0 fc in this segment; 0 otherwise) 
0.499 0.500 0.505 0.500 

Illuminance mean greater than 1.0 indicator (1 if illuminance 

mean greater than 1.0 fc in this segment; 0 otherwise) 
0.130 0.337 0.138 0.345 

No access point indicator (1 if segment has no access point; 0 

otherwise) 
0.116 0.320 0.266 0.442 

One or two access points indicator (1 if segment has one or 

two access point[s]; 0 otherwise) 
0.487 0.500 0.486 0.500 

Three or four access points indicator (1 if segment has three or 

four access points; 0 otherwise) 
0.288 0.453 0.187 0.390 

Five or more access points indicator (1 if segment has five or 

more access points; 0 otherwise) 
0.110 0.313 0.061 0.240 

Max-min ratio no less than 10 indicator (1 if ratio of 

maximum illuminance to minimum illuminance is greater than 

10 in this segment; 0 otherwise) 

0.887 0.317 0.855 0.353 

Daytime crash indicator (1 if segment experienced at least one 

daytime crash; 0 otherwise) 
0.923 0.267 0.592 0.492 

Wider shoulder width indicator (1 if segment shoulder width 

greater than 16 ft; 0 otherwise) 
0.420 0.494 0.520 0.500 

High-density commercial location indicator (1 if segment 

located in high-density commercial area; 0 otherwise) 
0.239 0.427 0.245 0.430 

Year 2012 indicator (1 if segment is observed in 2012; 0 

otherwise) 
0.231 0.422 0.270 0.444 
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3.3.5 Model Estimation 

The software package STATA 15 was used to estimate the conditional logistic model using the 

matched case-control data. The max-min ratio was significant at a 90% confidence level; all 

other explanatory variables are significant at a 95% confidence level, including illuminance 

mean, number of access points, daytime crashes, shoulder width, land use type, and observed 

year. The detailed estimation results and confidence interval (CI) of odds ratio are provided in 

Table 10. 

Table 10. Matched Case-Control Conditional Logistic Regression Model 

* 90% Confidence Interval 

The illuminance mean was aggregated into three levels: < 0.5 fc, 0.5 fc–1.0 fc and > 1.0 fc. As 

shown in Table 9, when the illuminance mean is less than 0.5 fc, the percentage of cases is more 

than the percentage of controls by 1.3% (37.1% for cases and 35.8% for controls), but when the 

illuminance mean is 0.5–1.0 fc, the percentage of cases is less than the percentage of controls by 

0.6% (49.9% for cases and 50.5% for controls). Similarly, when the illuminance mean is more 

than 1.0 fc, the percentage of cases is less than the percentage of controls by 0.8% (13.0% for 

cases and 13.8% for controls). This trend implies that nighttime crashes are less likely to be 

observed on segment with relatively great illuminance mean values, i.e., no less than 0.5 fc. 

The model estimation results presented in Table 10 confirmed this trend. The coefficients of all 

the illuminance mean levels are significantly negative at a confidence level of 95% and become 

smaller with an increase in the illuminance mean. This indicates that the increase in the 

illuminance mean is more likely to decrease the relative risk of nighttime crashes on roadway 

segments. This finding is consistent with previous studies (Jackett and Frith, 2013; Sullivan and 

Flannagan, 2007) and the common sense that driver vision and sight distance considerably 

improves as the illuminance mean increases, which contributes to a lower nighttime crash risk. 

The odds ratio gives a significant (95% confidence level) and valid (95% confidence interval 

excluding one) estimation on the CMF for the illuminance mean. If the illuminance mean on a 

Variable Coefficient z p-value OR 95% CI of OR 

Illuminance mean less than 0.5 fc indicator Baseline 

Illuminance mean 0.5–1.0 fc indicator -0.387 -2.04 0.041 0.679 [0.468, 0.984] 

Illuminance mean greater than 1.0 indicator -0.543 -2.30 0.021 0.581 [0.367, 0.922] 

Max-min ratio no less than 10 indicator 0.330 1.81 0.070 1.391 [1.031, 1.876] * 

No access point indicator Baseline 

One or two access points indicator 0..042 3.15 0.002 1.043 [1.016, 1.070] 

Three or four access points indicator 1.009 5.33 0.000 2.744 [1.893, 3.979] 

Five or more access points indicator 1,382 5.17 0.000 3.983 [2.360, 6.724] 

Daytime crash indicator 2.053 12.70 0.000 7.794 [5.68, 10.7] 

Wider shoulder width indicator -0.270 -2.03 0.042 0.763 [0.587, 0.991] 

High-density commercial location indicator -0.293 -2.05 0.040 0.746 [0.565, 0.987] 

Year 2012 indicator -0.285 -2.35 0.019 0.752 [0.593, 0.954] 

Model Statistics 

Number of observations 2,092 

Log-likelihood -531.446 

Pseudo R2 0.267 
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roadway segment increases from < 0.5 fc to 0.5 fc–1.0 fc, the relative risk of nighttime crashes is 

0.679 times as many as before. If the illuminance mean on a roadway segment increases from 

< 0.5 fc to >1.0 fc, the relative risk of nighttime crashes is 0.581 times as many as before. 

Compared with the previous study that developed joint CMFs for horizontal illuminance, 

including both the illuminance mean and standard deviation (Yang et al., 2019b), the CMFs for 

the illuminance mean was independently derived in this study by eliminating the effects of the 

illuminance standard deviation during the matched case-control design. Therefore, the derived 

CMFs can be used to better understand and assess the isolated effects of the illuminance mean on 

nighttime crashes. 

In addition to the illuminance standard deviation identified as a confounder and matched in this 

study, the ratio of the maximum illuminance to the minimum illuminance also is an illuminance 

uniformity measurement. The coefficient of a max-min ratio no less than 10 indicator is 

significantly positive at a confidence level of 90%. If the max-min ratio of a segment is no less 

than 10, the relative risk of nighttime crashes of this segment is 1.391 times as many as the 

segments with the max-min ratio less than 10. This aligns with the standard suggested by the 

Illuminating Engineering Society (IES) that the illuminance max-min ratio on the roadway must 

not exceed 10 (IESNA, 1993). 

3.4 Nighttime Crash Severity Diagnosis Model 

3.4.1 Problem Statement 

Most previous studies (see Table 2) focused on exploring the impacts of lighting patterns on 

nighttime crash occurrence; few investigated the impacts of lighting patterns on injury severity, 

which is another important risk measure of nighttime crashes. Wei et al. (2016) concluded that 

an increase in intersection illuminance was an effective countermeasure to reduce the probability 

of fatality and severe injury in a nighttime crash at a signalized intersection, especially for 

pedestrian- or bicycle-involved, head-on, and angle crashes. For these crash types, intersection 

illuminance kept at 0.9 fc or higher tends to reduce the probability of fatality, severe injury, and 

non-severe injury by 10.7%, 9.0%, and 6.3%, respectively. If alcohol or drugs were involved, 

these reductions were even larger. Xin et al. (2018) applied a random parameter ordered probit 

model to describe the connection between the injury severity of a nighttime crash on a roadway 

segment and the lighting level of a 1,000-ft zone in the upstream of a crash. They found that 

increasing average horizontal illuminance from 0.4 fc or less to 0.4–0.8 fc can significantly 

reduce the probability of injury severity in a nighttime crash by 4.05% (fatal or incapacitating 

injury) and 6.62% (non-incapacitating injury or possible injury).  

Illumination distribution along a roadway corridor presents an intricate pattern due to lighting 

depreciation, obstacles (e.g., tree branches), and external lighting resources. Figure 11 shows an 

example of street lighting patterns influencing nighttime driving safety. Along the car travel 

route, the horizontal lighting level suddenly changes from 0.1 fc to 0.9 fc; the driver needs 

several seconds to adapt to the new lighting condition, and, during this period, the driver’s vision 

deteriorates. If an object presents in front of the car during this time, the driver may not be able 

to avoid a collision, potentially resulting in a severe injury. The average illuminance used in 

studies by Wei et al. (2016) and Xin et al. (2018) represented the overall lighting level of the 
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segment and could not capture this local feature. Ratio-based uniformity measures (max/min and 

average/min) maintain an extreme value (minimum or maximum) and may misinterpret a 

dangerous pattern. Traditional photometric statistics are applicable in a grid analysis for a narrow 

zone (single lighting pole design or isolated intersection), but they may not be appropriate for a 

safety diagnosis for lighting patterns along a roadway corridor. 

0.1 0.1 0.1 0.1 0.4 1.0 0.5 0.6 0.7 1.0 1.3 1.5

0.1 0.1 0.9 0.6 0.8 0.8 1.2 1.40.6

min max

true pattern
 

Figure 11. Example of Illuminance Patterns Influencing Driver Vision 

This study aimed to develop a novel method to diagnose street lighting patterns that result in a 

severe injury in a nighttime crash. A machine-learning algorithm was used to process the high-

resolution lighting data and increase prediction accuracy.  

3.4.2 Data Preparation 

Data for 2,862 nighttime crashes that occurred between 2012 and 2014 were collected from 

roadway corridors with measured lighting data. For each crash, a rectangle buffer was created 

towards the upstream direction of the crash in ArcGIS. The measured lighting data that fell into 

the buffer were spatially matched to the associated crash. The buffer represents the range of 

lighting patterns that influences crash injury. To capture the safety impacts of lighting patterns 

more accurately, each buffer was divided into several sub-zones. The mean of matched lighting 

data (horizontal illuminance) was calculated for each sub-zone to represent the lighting level of 

the local zone. An example of the lighting buffer and sub-zones is shown in Figure 12.  

In addition to lighting and crash data, geometric, traffic control, and environmental data were 

also collected and matched to nighttime crashes. The collected data are described in Table 11. 
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(a) Lighting pattern associated with a non-severe injury crash

(b) Lighting pattern associated with a severe injury crash
 

Figure 12. Lighting Buffers and Sub-zones Associated with Nighttime Crashes  

Table 11. Description of Collected Data 

Category Values 

Crash severity 1 – severe injury (fatal or incapacitating injury), 0 – others  

Lighting Average horizontal illuminance (fc) of sub-zones 

Weather condition Clear, cloudy, rainy, fog, smog, or smoke 

Speed limit (mph) 30, 35, 40, 45, 50, 55, 60 

Drug-, alcohol-involved Drug-involved, alcohol-involved, drug-and-alcohol-involved 

Junction event  On roadway, off roadway 

Site location 
Not at intersection/railroad crossing/bridge, at intersection, influenced 

by intersection, driveway access, railroad, bridge, on-ramp, off-ramp 

Related junction 

Non-junction, intersection, intersection-related, driveway/alley access-

related, railway grade crossing, entrance/exit ramp, crossover-related, 

shared-use path or trail, through roadway, narrative 

Traffic device 

No controls, school zone sign/device, traffic control signal, Stop sign, 

Yield sign, flashing signal, railroad crossing device, person (including 

flagman, officer, guard, etc.), warning sign and narrative 

Work zone Yes, no 

Roadway surface condition Dry, wet, mud, dirt or gravel roadway, water, narrative 

Vehicle driveway 

Two-way not divided; two-way not divided with continuous left-turn 

lane; two-way divided, unprotected median; two-way divided, positive 

median barrier 

Number of lanes 

(bidirectional) 
1-10 
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3.4.3 Methodology 

The Support Vector Machine (SVM) classifier was applied to predict injury severity based on 

prevailing lighting patterns, roadway conditions, and environmental characteristics. Figure 13 

illustrates the procedure for the prediction model development; the basic steps include data 

processing, SVM model training, and SVM model testing. A grid search was conducted to find 

the “best” model that reaches the highest prediction performance.   

Matched Crash-Lighting Data Data Processing

SVM Model Training

SVM Model Testing

Parameter Grid Search

 Best  Model

 

Figure 13. Flow Chart of Technical Approach for Model Development 

Data Preprocessing 

• Feature Selection – Model input features should be the factors that contribute to crash 

injury severity. Crash-, person-, and vehicle-specific factors were excluded from the 

feature selection. Although these variables have significant impacts on crash injury 

severity, it is difficult to collect data for the model to diagnose lighting patterns, as some 

features cannot be observed before crash occurrence (for example, impact point on 

vehicles in a crash). To minimize the cost for implementing the model, only factors that 

can be retrieved from roadway inventory databases are included in the model, such as 

geometric data, traffic control devices, and environmental factors.  

• Encoding and Normalization – Feature variables can be divided into two categories: 

categorical and continuous. Unlike some machine learning algorithms (e.g., decision 

tree), SVM cannot directly learn from categorical data. A data transformation from 

categorical data to a numerical format is conducted. Since no ordinal relationship exists 

in categorical variables, one hot encoding is applied to categorical variables to provide a 

new representation for machine learning tasks. In one hot encoding, each unique value in 

a category is converted to a new binary variable, and a categorical variable with k 

different unique values is converted to k binary variables. For continuous variables, all 

variables are scaled in [0, 1] to prevent variables in different magnitudes from affecting 

model performance. Assume 𝑥 is a continuous variable, min (𝑥) and max (𝑥) are the 

minimum and maximum values; the scaled value 𝑥′ is given below: 
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𝑥′ =  

𝑥 − min (𝑥)

max (𝑥) − min (𝑥)
 

(8) 

Support Vector Machine 

SVM (Chang and Lin, 2011) is a highly-preferred machine learning algorithm that produces 

significant accuracy with less computation. It defines a hyperplane to distinguish the data in a 

d-dimensional space, where d is the number of variables. The hyperplane is found by 

maximizing the margin for all classes to provide more classification confidence. For the binary 

classification, given n observations: 

 (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑖, 𝑦𝑖), 𝑦𝑖 ∈ {0, 1} (9) 

where yi = 1 indicates a serve injury crash; yi = 0 indicates others; xi represents the input features. 

The decision hyperplane is defined as: 

 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (10) 

where w is the weight vector and b is the intercept. To solve the following optimization problem 

SVM training becomes: 

 

𝑀𝑖𝑛 
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜀

𝑛

𝑖=1
, 𝐶 > 0 

 

Subject to 𝑦𝑖(𝑤𝑇∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜀 

(11) 

where 𝜙(𝑥𝑖) maps 𝑥𝑖 into a higher dimension space; 𝜀 is the error constraint and C is the 

regularization parameter. By introducing a Lagrange multiplier, the optimization problem 

becomes: 

 

𝑀𝑖𝑛 
1

2
𝛼𝑇𝛼𝑄 − 𝑒𝑇𝛼 

 

Subject to 𝑦𝑇𝛼 = 0, 0 < 𝛼𝑖 < 𝐶 

(12) 

where e is a vector of all ones; Q is an n x n matrix, 𝑄𝑖𝑗 ≡ 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗), 𝐾(𝑥𝑖, 𝑥𝑗) is the Radial-

Basis Function (RBF) kernel, shown in Eq. 6. 

 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾|𝑥𝑖 − 𝑥𝑗|2) (13) 

where 𝛾 is kernel parameter. After solving the optimization problem, the hyperplane is defined 

as: 
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 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 = ∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥)
𝑛

𝑖=1
+ 𝑏 (14) 

This hyplane is the decision boundary of the model, which helps for label prediction.  

Grid Search 

A grid search is conducted to find the “best” SVM model that can most accurately predict the 

injury severity of nighttime crashes based on input features. The search scope includes four 

parameters, including buffer length (l), number of sub-zones (m), SVM kernel parameter (g), and 

SVM regularization parameter (C). The first parameter (l) defines the influence area of lighting 

patterns on a crash. The number of sub-zones describes lighting patterns more precisely within a 

buffer. The grid search traverses the given ranges for the two variables and finds the best values. 

The search range is given below: 

• Buffer length – 0.1, 0.125, 0.15, 0.175, 0.2, 0.225 miles 

• Number of sub-zones – 5, 10, 15 

The buffer and sub-zones were produced for each crash by combining buffer lengths and zone 

numbers. The lighting data and other features were matched to each generated buffer and 

associated sub-zones. Finally, 18 crash-lighting datasets were generated.  

SVM parameters g and C are model hyperparameters that may depend on the data but cannot be 

estimated from the data. The grid search is used to find the optimal value of hyperparameter to 

address the most accurate model. For each crash-lighting dataset, 80% of observations are 

randomly selected to train the SVM model. The LIBSVM JAVA Library (Chang and Lin, 2011) 

is used to perform model training. The grid search traverses different SVM parameters g and c in 

the range of [2-10, 210] to explore more space and find the hyperplane that provides better 

discriminative classification. 

To identify the well-trained model with different parameters, each model with the specified 

parameter is validated using tenfold cross-validation to test the effectiveness of the model. Since 

severe injury crashes are rare events, the crash-lighting datasets are unbalanced; non-severe 

injury crashes (86% of the sample) occur more than severe ones (14%). The unbalance may 

result in inaccurate prediction. To address this issue, the F1 score (Powers, 2011) combines both 

the precision p and the recall r and better reflects the effectiveness of a model. Precision p is true 

positive samples over the sum of true positive and false-positive samples. r is true positive 

samples over the sum of true positive and false negative samples. The F1 score is a harmonic 

average of the precision and recall, as shown below: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝) =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑟) =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(15) 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

After training, the SVM model is applied to the remaining 20% of observations to test the 

prediction accuracy of the model with the highest validation results. To avoid randomness, each 

crash-lighting dataset is trained 10 times, and the average testing accuracy on the trained model 

is calculated as the model testing accuracy. 

3.4.4 Results 

Grid search results are presented in Table 12. Each row represents the best training result for the 

18 combinations of buffer length and sub-zone number. The results indicate that the trained 

SVM models had similar performance. The SVM model trained with a buffer of 0.125 miles and 

10 sub-zones had the best performance.  

Table 12. Grid Search Results 

Dataset ID Buffer Length (mi) Number of Zones Accuracy (%) Sample Size 

1 0.1 5 78.8 2,416 

2 0.1 10 78.3 2,400 

3 0.1 15 77.8 2,364 

4 0.125 5 78 2,381 

5 0.125 10 80.1 2,375 

6 0.125 15 78.6 2,363 

7 0.15 5 78.9 2,329 

8 0.15 10 78.8 2,326 

9 0.15 15 79.1 2,315 

10 0.175 5 78.2 2,297 

11 0.175 10 79 2,292 

12 0.175 15 78.1 2,281 

13 0.2 5 77.7 2,242 

14 0.2 10 78.1 2,241 

15 0.2 15 78.6 2,235 

16 0.225 5 78.9 2,206 

17 0.225 10 77.9 2,194 

18 0.225 15 78.1966 2,191 

 

An example of a lighting pattern diagnosis is provided in Table 13. The best model predicted the 

injury severity of the two crashes. For the possible injury crash, the predicted probability of label 

“1” is 5.6%; the predicted probability for the fatal crash is 73.3%. This example shows that the 

SVM model effectively classified the crash severity level based on lighting patterns and other 

features. By checking the photometric statistics for the two crashes, it was found that the possible 

injury crash experienced a higher lighting level (1.298 fc) and much better uniformity (11.4 for 

avg/min and 19.5 for max/min) compared to the fatal crash. Figure 12(a) shows that the possible 

injury crash with the lighting level along the buffer was kept at a high level. Five zones (50%) 

were higher than 1.0 fc, and four fells in the range of 0.75–1.0fc. Only one zone was lower than 

0.7 fc. In contrast, Figure 12(b) represents the lighting pattern of the fatal crash and expresses a 
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diverse lighting distribution; three sub-zones had a lighting level of 0.5 fc or less, and, most 

importantly, a very low-lit zone (≤ 0.5fc) directly connected to a high-lit zone (≥ 1.0fc). The 

contrast illumination pattern causes high risk for drivers. The SVM model captured the traits of 

the two lighting patterns.  

Table 13. Comparison of Lighting Pattern Diagnosis for Two Crashes 

Category Item Crash I Crash II 

Crash Features 
Figure Figure 12(a) Figure 12(b) 

True severity Possible Injury Fatal 

SVM Model 

 

Buffer length 0.125 mi 

Number of sub-zones 10 

Predicted probability of label “1” 5.6% 73.3% 

Final label 0 – Non-severe Injury 1 – Severe Injury 

Statistics for 

whole buffer 

Average horizontal illuminance (fc) 1.298 0.705 

Average/Min 11.4 43.5 

Max/Min 19.5 134.5 

The developed SVM model effectively captured the traits of lighting patterns that are complexly 

distributed over space. Even without knowing factors during and after a crash, the developed 

SVM model effectively predicted the crash injury severity based on lighting patterns. SVM 

model inputs include lighting patterns and other data that can be quickly retrieved from roadway 

inventory databases. The model is easy to implement for scanning the lighting patterns of a 

roadway corridor and identifying zones with high injury risk if a crash occurs.  

The grid search defined the best lighting pattern diagnosis settings: 0.125 miles of buffer length 

and 10 sub-zones within one buffer. However, this study did not consider the lateral range of 

lighting patterns. In addition, only the mean of horizontal illuminance for each sub-zone was 

used to describe the lighting patterns. The simple measure may lose lighting information; more 

informative lighting measures, such as a histogram, and configurable buffer width will be 

considered in a future study.  
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Chapter 4: Case Studies 

The developed tools were applied on selected corridors to demonstrate and validate the tool’s 

operation and performance. Corridors were selected from CUTR’s lighting data inventory, 

including additional lighting data collected for FDOT District 7 and Johnson, Mirmiran & 

Thompson (JMT) in 2020. The diagnosis results were provided to FDOT and JMT for supporting 

their decisions related to street lighting management. 

4.1 Lighting Diagnosis and Proposed Lighting Improvement Evaluation on  

W Busch Boulevard 

W Busch Boulevard in Tampa is a principle arterial in an urban area. Characteristics of Busch 

Boulevard are shown in Table 14. 

Table 14. Busch Boulevard Characteristics 

Item Description 

Functional Classification Principal Arterial 

Area type Urban 

Boundary Dale Mabry Hwy – Florida Ave 

Roadway ID in database 10310000 

BMP – EMP 0.087 – 2.847 

Length  2.76 mi 

Number of through lanes 4 (bidirectional) 

Speed limit 45 mph 

AADT 42,500 

Lighting technology HPS 

DOT lighting standards  Mean ≥ 1.5 fc, max/min ≥ 10, avg/min ≥ 4 

The CUTR team collected lighting data (horizontal illuminance) on this segment using the 

ALMS. The illuminance points were read every 10 ft per lane along the corridor, and data for 

12,286 illuminance points were collected. The photometric statistics in Table 15 clearly indicate 

that the lighting patterns do not satisfy FDOT standards in either mean and uniformity.  

Table 15. Photometric Statistics for Whole Segment  

on W Busch Boulevard 

Item Description 

Average Illuminance 0.72 fc (< 1.5 fc) 

Avg/Min 198.77 (>>4) 

Max/Min 391.78 (>>10) 

A heatmap was produced based on the measured illuminance data, as shown in Figure 14, and 

indicates that the lighting pattern is unbalanced along the segment. The lighting level on the right 

side is significantly higher than that on left side; thus, statistics for the whole segment may not be 

reasonable to describe the lighting condition along the corridor. 
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Figure 14. Heatmap for W Busch Boulevard 

The Automatic Lighting Diagnosis Module was applied to split the segment into sub-sections 

based on similarity of average lighting level. The default values of the parameters (Table 6) were 

used to conduct the diagnosis; the diagnosis results are shown in Figure 15.  

The diagnosis module recognized the diversity of lighting patterns and split the whole segment 

into four sections. Zone 1 represented the “worst” portion on W Busch Boulevard; the average 

lighting level in Zone 1 was 0.25 fc, significantly lower than the FDOT standard (1.5 fc for 

major arterials). The section also had “poor” uniformity: max-min ratio (391.8) and avg-min 

ratio (70.6) were much higher than FDOT standards (10 and 4, respectively). Zone 2 was 

brighter than Zone 1; its average lighting level is 0.73 fc, still lower than the standard. The 

uniformity measures were 30.4 (max/min) and 15.6 (avg/min). The lighting pattern in Zone 4 

was slightly better than Zone 2, with a mean of 0.84 fc, max/min of 12.7, and avg/min of 7.5. 

However, the two zones still did not satisfy FDOT standards. Zone 3 had the “best” lighting 

performance; the average lighting level was 1.04 fc, lower than FDOT standards. However, the 

uniformity satisfied FDOT standards in either max/min (5.2 < 10) or avg/min (3.8 < 4). The 

Automatic Lighting Diagnosis System produced histograms of horizontal illuminance for each 

zone, which show that 65% of the area in Zone 1 was lower than 0.25 fc; 40% of the area in 

Zone 3 was 1.0–1.5 fc, and Zone 2 and Zone 4 had a relatively uniform distribution of lighting 

level over categories.  

The crash risk prediction module was applied to analyze the nighttime crash risk for each 

section. Zone 3, which had the best lighting performance, was expected to have the lowest 

nighttime crash frequency (4.3 crashes per year per mile) in the target year (2020). Zone 1 and 

Zone 2 had similar safety performance (expected nighttime crash frequency in 2020)—11 

crashes per year per mile and 10 crashes per year per mile, respectively. Zone 4 had the “worst” 

safety performance; it was expected to have 14.8 crashes per year per mile in 2020. 

In summary, the lighting patterns on W Busch Boulevard (Dale Mabry Highway to N Florida 

Avenue) did not meet FDOT standards; most of the segment had a high nighttime crash risk 

(≥ 10 crashes per year per mile).  
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Zone: 1

▪ BMP-EMP: 0.087 - 0.507

▪ Mean: 0.25 fc

▪ Avg/Min: 70.6

▪ Max/Min: 391.8

Zone: 2

▪ BMP-EMP: 0.506 - 1.788

▪ Mean: 0.73 fc

▪ Avg/Min: 15.6

▪ Max/Min: 30.4

Zone: 3

▪ BMP-EMP: 1.788 – 1.998

▪ Mean: 1.04 fc

▪ Avg/Min: 3.8

▪ Max/Min: 5.2

Zone: 4

▪ BMP-EMP: 1.998 – 2.850

▪ Mean: 0.84 fc

▪ Avg/Min: 7.5

▪ Max/Min: 12.7

 

Figure 15. Automatic Lighting Diagnosis on W Busch Boulevard 

  



41 

 

 

 

 

Zone: 1

▪ Length: 0.42 mi

▪ Historical Crash Frequency: 5.3/y

▪ Expected Crash Frequency: 4.6/y

▪ Expected Crash Frequency: 11/y/mi

Zone: 2

▪ Length: 1.282 mi

▪ Historical Crash Frequency: 15.7/y

▪ Expected Crash Frequency: 12.8/y

▪ Expected Crash Frequency: 10/y/mi

Zone: 3

▪ Length: 0.21 mi

▪ Historical Crash Frequency: 1/y

▪ Expected Crash Frequency: 0.9/y

▪ Expected Crash Frequency: 4.3/y/mi

Zone: 4

▪ Length: 0.852 mi

▪ Historical Crash Frequency: 19.3/y

▪ Expected Crash Frequency: 12.6/y

▪ Expected Crash Frequency: 14.8/y/mi

 

Figure 16. Nighttime Crash Risk Prediction for W Busch Boulevard 

 



42 

 

 

 

 

Upgrading the street lighting system is a potential countermeasure to improve nighttime safety 

on W Busch Boulevard. The CMFs developed in this study were used to estimate nighttime crash 

reduction due to the lighting system upgrade. Assuming a lighting upgrading project is proposed 

to increase the lighting patterns to FDOT standards, the estimated nighttime crash reduction is 

given in Table 16. 

Table 16. Estimation of Nighttime Crash Reduction with Proposed Lighting Improvement 

 Zone 1 Zone 2 Zone 3 Zone 4 

Mean of 

Illuminance 

Existing 0.25 fc 0.73 fc 1.04 fc 0.84 fc 

Proposed 1.5 fc 1.5 fc 1.5 fc 1.5 fc 

CMFM 0.581 0.856 1 0.856 

Max/Min 

Existing  391.8 30.4 5.2 12.7 

Proposed 10 10 10 10 

CMFU 0.718 0.718 1 0.718 

Expected Nighttime Crash Frequency (per yr) 4.6 12.8 0.9 12.6 

CMFM × CMFU 0.417 0.615 1 0.615 

Crash Reduction Factor 0.583 0.385 0 0.385 

Estimated Crash Reduction (per yr) 2.7 4.9 0.0 4.9 

Total Crash Reduction 12.5 crashes per year 

4.2 Validation of LED Street Lighting Upgrade 

E 7th Avenue from Nuccio Parkway to 24th Street in Tampa is a historic community with many 

bars, clubs, and recreational stores. The street experienced significant pedestrian crashes and 

injuries, especially at night. The City of Tampa upgraded the street lighting technology from 

HPS to LED in 2015. The CUTR team help the City measure the lighting patterns on 7th Avenue 

in 2014 (before upgrading), 2015 (after upgrading), and 2019 (the second measure after 

upgrading) through a contract with FDOT District 7. This study diagnosed and compared 

lighting patterns collected in three stages to verify LED lighting patterns. The basic information 

of E. 7th Avenue is shown in Table 17.  

 Table 17. E 7th Avenue Characteristics 

Item Description 

Functional Classification Major Collector with frequent pedestrian traffic 

Area type Urban 

Length One mile 

Number of through lanes 2 (bidirectional) 

Speed limit 30 mph 

AADT 5,600 

Lighting technology HPS (before 2015), LED (since 2015) 

DOT lighting standards  Mean ≥ 1.0 fc, max/min ≥ 10, avg/min ≥ 4 

The system produced heatmaps for the three lighting measures, as shown in Figure 17. The 

comparison shows the following findings: 

• The mean of horizontal illuminance satisfied FDOT standards in the three stages. The 

mean of horizontal illuminance decreased after LED upgrading (1.71 fc to 1.3 fc). 
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• The uniformity improvement was very significant (avg/min from 106.9 to 9.7 and 8.8, 

max/min from 143 to 10.5 and 9.4). Based on the max-min ratio, the uniformity satisfied 

FDOT standards after LED upgrading.  

• According to the CMFs developed in this study (Table 10), improved uniformity can 

reduce nighttime crash frequency by 28%, and reduction of illuminance mean has no 

significant influence on safety performance.  

• Depreciation of LED lighting performance was slight, as the lighting patterns in 2015 and 

2019 are similar. 

 

Figure 17. Comparison of Lighting Patterns on E 7th Avenue, Tampa 
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Chapter 5: Summary and Conclusions 
 

5.1 Summary and Conclusions 

Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and 

security for multimodal road users (motorists, pedestrians, cyclists, transit passengers). To cost-

effectively maintain a roadway lighting system, key tasks in infrastructure management include 

periodically measuring roadway lighting levels, diagnosing lighting performance based on 

collected data, and providing decision-making support for maintenance and improvement.  

The ALMS developed by CUTR provides a low-cost and time-effective solution for collecting 

high-resolution lighting data for a big-scale roadway network. CUTR contracted with FDOT and 

JMT to measure lighting data; since 2012, 400 center-mile measurements have been completed 

using the ALMS. This lighting measurement is expanding to other districts.  

This project developed a computer tool to effectively analyze big-scale lighting data. The tool 

provides three core functions – lighting pattern diagnosis, crash risk prediction, and data 

visualization. A summary of the functions is given in Table 18. The tool was developed on an 

ArcGIS web platform, and the analysis functions were coded as ArcGIS geoprocessing tools that 

can be accessed by desktop and web applications. A web-GIS application provides interactive 

interface to receive user command and present analysis results.  

Table 18. Summary of Core Functions 

Function Algorithm/Technology Description 

Lighting Pattern 

Diagnosis 
Hierarchical Clustering Model 

Distinguish lighting patterns that do not 

satisfy FDOT standards 

Crash Risk 

Prediction 

• Safety Performance Function 

• Empirical Bayesian Model 

• CMF developed by Case-Control 

Study 

• Predict nighttime crash frequency by 

lighting, traffic, and geometry 

conditions 

• Estimate nighttime crash reduction due 

to lighting pattern improvement 

Data 

Visualization 
Web-GIS Present analysis results on GIS map 

The developed tool was implemented on the segments studied by CUTR for FDOT and JMT in 

2019. Two case studies are presented in this report to demonstrate the performance of tool in 

lighting management and evaluation projects. The tool successfully diagnosed the lighting 

pattern on W. Busch Boulevard in Tampa, predicted nighttime crash risk with existing lighting 

conditions, and estimated the benefit (crash reduction) of a proposed lighting improvement 

project. The tool was also used to compare the lighting patterns of E. 7th Avenue in Tampa over 

three years to validate the LED upgrading project, which showed that the tool reached 

Technology Readiness Level 7: Prototype Demonstrated in Operational Environment.  
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5.2 Implementation 

The CUTR team will implement the tools and methods developed in this project in new lighting 

measurement and analysis tasks funded by FDOT and JMT. To implement the tool, CUTR will 

complete the following steps: 

• Debugging – As a prototype, it is normal for errors and bugs to exist. The research team 

will continue to test the system to identify and fix bugs in the current version. A stable 

version is expected to be implemented in a production environment. 

• Standard Operation Procedure – The research team will develop a Standard Operating 

Procedure (SOP) to guide the implementation step by step. The SOP will include 

importing raw data from the ALMS, converting them to a standard data format, 

conducting analysis based on needs, and producing formatted reports. Operators will be 

trained according to the SOP to provide a high-quality services in data collection, 

processing, and analysis. 

• Implementation – The CUTR team will apply the SOP and tools in the lighting data 

collection tasks. Analysis results will be provided to FDOT/JMT for their decision- 

making in street lighting management. Experiences from the implementation will be used 

to update the system.  

5.3 Future Study 

Although the prototype successfully demonstrated its functions in lighting pattern analysis, there 

are some limitations requiring further study:  

• The current lighting diagnosis algorithm considers only one measure (mean or 

uniformity) in calculating similarities. A study is needed to develop a new lighting 

diagnosis algorithm that recognize lighting patterns by mean and uniformity 

simultaneously to provide a more reasonable pattern recognition method. 

• Crash risk prediction in the current version is based on nighttime crash frequency. 

Although the injury severity model was developed in this study, it was not integrated in 

the computer tool due to data availability in practice. A future study will develop a new 

crash risk index to combine the information of frequency and severity. The new crash 

risk prediction can provide a more reasonable measure for scaling the safety performance 

of street lighting patterns. 

• The current computer tool can be used for single segment analysis; however, a decision-

making support system is needed to analyze the lighting patterns for a large-scale area (i.e., 

city, county, or district). A future study would develop analysis functions at the planning 

level, including identifying segments with high nighttime crash risk, diagnosing lighting 

patterns (if lighting is a major cause), estimating benefits/cost for proposed lighting 

improvement projects, and ranking the proposed project based on benefit-cost ratios. 

FDOT managers can select top improvement projects from a ranking list to optimize street 

lighting management and maintenance.   
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