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Abstract

Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and
security for multimodal road users (motorists, pedestrians, cyclists, and transit passengers). To
cost-effectively maintain a roadway lighting system, key tasks in infrastructure management
include periodically measuring roadway lighting levels, diagnosing lighting performance based
on collected data, and providing decision-making support for maintenance and improvement.
The Advanced Lighting Measurement System (ALMS) developed by CUTR provides a low-cost
and time-effective solution to collect high resolution lighting data for a big-scale roadway
network. This project aimed to develop innovative methods and tools to effectively analyze “big”
lighting data.

A computer tool was developed on the ArcGIS web-GIS platform in this study that integrates
three core modules and provides core functions for lighting pattern diagnosis, nighttime crash
risk prediction, and data visualization. The hierarchical clustering algorithm is used to recognize
lighting patterns based the similarity of a photometric measure (average illuminance or
uniformity). Safety performance function and Empirical Bayesian model were adopted to predict
nighttime crash frequency with given lighting conditions. The study developed Crash
Modification Factors to assess crash reduction due to lighting pattern improvement.

The developed methods and tools were applied in CUTR’s new lighting data collection and
analysis tasks from the Florida Department of Transportation (FDOT) and Johnson, Mirmiran &
Thompson (JMT), Inc. Two case studies demonstrated the performance of the computer tool in
various application scenarios, such as lighting pattern recognition, lighting system upgrading
validation, and nighttime crash risk analysis. To implement the developed tools in an operational
environment, the research team will continue to upgrade the tools, including developing Standard
Operation Procedures (SOPs), improving lighting pattern diagnosis model, and providing
planning-level lighting management for decision-makers.



Chapter 1:  Introduction

1.1 Background

Nighttime crashes, particularly those that result in fatalities and injuries, are overrepresented on
the US highway system. About 51% of fatal crashes and 30% of injury crashes occur at night,
although only 21-23% of vehicle miles traveled (VMT) are at night (Monsere and Fischer,
2008). This issue is even more serious for vulnerable road users; nighttime crashes account for
almost 70% of pedestrian fatalities (NHTSA, 2015). Reduced visibility in darkness, accompanied
by drowsy and impaired driving, are the primary contributing factors to nighttime crash
occurrence and injuries (National Safety Council, 2018). Roadway lighting, which “significantly
improves the visibility of the roadway, increases sight distance, and makes roadside obstacles
more noticeable to the driver, and therefore more avoidable” (FHWA, 2012), has been
recognized as a vital countermeasure to prevent nighttime crashes. Additionally, roadway
lighting provides clear benefits of personal security for pedestrians, bicyclists, and transit users
during nighttime (FHWA, 2012). Thus, ensuring that a roadway lighting system provides
adequate illumination is critical to improve nighttime safety and security for all road users.

The AASHTO Roadway Lighting Design Guide (AASHTO, 2011) provides roadway lighting
design standards in terms of average horizontal/vertical illuminance, average luminance, and
ratio-based uniformity metrics. The standards have been adopted by state departments of
transportation (DOTS) for new street lighting design and existing system maintenance. Table 1
presents the lighting level criteria adopted in Florida.

Table 1. FDOT Lighting Level Criteria

ATERYS Ilumination el
e Illuminance Level . . . Luminance
Roadway Classification (foot-candle) Uniformity Ratios Ratio
Horizontal | Vertical | Avg./Min. | Max./Min. | LymaxyLavg
Conventional Roadway Lighting
Freeway 15
Major Arterials 15 N/A <4:1 <10:1 <0.3:1
Other 1.0
High Mast Roadway Lighting
All Roads [ 08-1.0 | NA [ <31 | <101 | N/A
Signalized Intersection Lighting
New Construction 3.0 2.3
Lighting Retrofit 115’((;[%)) 115’((;[%)) =41 =10:1 N/A
Midblock Crosswalk Lighting
Low Ambient Luminance 2.3
Medium & High Ambient N/A 30 N/A N/A N/A
Luminance '

Source: FDOT Design Manual, Table 231.2.1
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However, because of natural bulb degradation, obstacles including trees and animals, external
lighting resources, and other unexpected factors, roadway lighting illumination performance may
vary over time and cannot meet roadway lighting standards. Transportation agencies must obtain
answers for two questions in their decision-making for lighting infrastructure management:
Which segments/zones do not meet lighting maintenance standards, and which segments/zones
have significant nighttime safety risks caused by poor lighting patterns and what is the risk
degree? To answer the questions, periodic lighting level monitoring on a large-scale roadway
network is needed.

1.2 Photometric Measures

Multiple photometric measures are adopted to measure street lighting levels in street lighting
design and maintenance. The most common measure is illuminance that is the amount of light
falling onto a surface. Illuminance could be measured as lumens per unit area either in foot-
candles (lumens/ft?) or in lux (lumens/m?) (FHWA, 2012). As illuminance is independent of the
retroflection characteristics of roadway surface, it is simple to measure and calculate. Two major
illuminance metrics are used:

e Horizontal illuminance is measured at a horizontal surface six inches above the ground.
This metric is related to the visibility of general objects, such as vehicles, obstacles, etc.

e Vertical illuminance is measured at a vertical surface height of five feet above the
ground, which is a commonly criteria for the height of pedestrians’ face. This metric
represents the visibility of pedestrians.

Many factors influence driver vision when driving at night. From the photometric perspective,
contrast and glare are two major factors. The contrast of an object is the luminance and color
difference of the object from its background. High contrast of an object means that drivers can
more easily detect the object. The function of street lighting is to produce sufficient luminance
contrast of an object on a road that exceeds the requirement by drivers for detecting it. Glare is
the eye adaption level affected by nonuniform lighting sources, especially bright ones. A long
adaption procedure caused by nonuniformities in the visual field reduces driver vision for
detecting objects and may result in collisions. A good design of a street lighting system can
provide a uniform visual environment for drivers and reduce the risk of glare.

To assess the photometric performance of street lighting, two major metrics are used. Average
illuminance is defined as the arithmetic mean of illuminance on a roadway facility. This metric
represents the average lighting level of the roadway facility; a high average illuminance value
indicates that the visual condition of the roadway facility is brighter, and the contrast of objects
is sufficient. Meanwhile, max-min ratio (maximum illuminance + minimum illuminance) or avg-
min ratio (average illuminance + minimum illuminance) are used to scale the uniformity of a
street lighting system. Ratio metrics closing to 1 designates that the luminance distribution on a
roadway facility is uniform and the risk of glare is small. As shown in Table 1, average
illuminance (for both horizontal and vertical) and illuminance ratios have different requirements
by various roadway functional classifications in street lighting design.
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1.3 Advanced Lighting Measurement System (ALMS)

The conventional method for measuring roadway illumination involves spot-checking along a
grid set up on a selected road. Measurements are taken using a light meter placed six inches
above the ground. The operator must set up the light meter, then stand back and trigger a
measurement. The light meter is then moved to the next point on the grid, and the process is
repeated.

This method is both time-consuming and dangerous. It is a lengthy process for the operator to set
up the collection device in the roadway, step back, and record a reading. This also makes the
operator and the testing equipment vulnerable to the dangers of the road for prolonged periods of
time. This danger can be avoided with lane closures and police presence but doing so adds cost
to the measurement process; it is estimated that a one-mile measurement costs around $5,000. In
addition, human error may reduce the accuracy and reliability of lighting data. Due to these
factors, extended roadway illumination studies are rarely implemented, leaving questions on
whether roadways meet sufficient lighting standards.

Figure 1. Conventional Lighting Data Measurement

Adequate and accurate lighting data from periodical lighting monitoring are the basis for
supporting such decision-making. To overcome the defects of conventional lighting
measurement methods, an innovative lighting measurement technology, the Advanced Lighting
Measurement System (ALMS), was developed the University of South Florida (Johnson et al.,
2014). The ALMS, as shown in Figure 2, is powered by a microcontroller that connects to two
lighting meters (Konica Minolta T-10A). A Distance Measurement Instrument (DMI) reads
accurate distance information from the vehicle’s on-board diagnostics (OBD) bus and triggers
the microcontroller reading lighting meters at a given distance interval. Compared to the
conventional method, the ALMS has the following advantages:
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e Can read two illuminance points per 10 ft per lane, and the high-resolution lighting data
can describe the lighting pattern of a roadway facility more accurately. Figure 3 presents
an example of horizontal illuminance data in foot-candles at a signalized intersection
using the ALMS.

e Can be operated at a high speed (> 30 mph) in fully automatic method, operating cost is
much lower than the conventional method ($300 vs $5,000). The high operating speed
and low cost allow periodic lighting data collection in a big-scale roadway network.

e Fully eliminates operator exposure in traffic and human error in operations; provides
highly accurate and reliable lighting data.
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Figure 3. Examples of Horizontal Illuminance Data Collected by ALMS
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Researchers have used the ALMS to collect horizontal lighting data for 300+ centerline miles in
the Tampa Bay areas since 2012, with accumulated lighting points exceeding millions and
covering the major corridors in the area, as shown in Figure 4. The big data produced from the
ALMS bring opportunities to deeply analyze lighting performance and improve nighttime safety.
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Figure 4. Lighting Data Measurement in Tampa Bay using ALMS
1.4 Safety Performance of Street Lighting

The safety performance of street lighting has been documented in many reports and publications.
Most studies considered street lighting as a binary factor (presence or not; before and after
improvement) at intersections (Bruneau and Morin, 2005; Bullough et al., 2013; Donnell et al.,
2010; Elvik, 1995; Isebrands et al., 2006; Kim and Washington, 2006; Preston and Schoenecker,
1999), roadway segments (Anarkooli and Hadji Hosseinlou, 2016; Wanvik, 2009; Yu et al.,
2015; Zhang et al., 2012), or both (Monsere and Fischer, 2008; Sullivan and Flannagan, 2002).
These studies all led to the conclusion that the presence of roadway lighting significantly
improves nighttime safety in terms of reduction of nighttime crash rate/frequency, injury
severity, and night-day crash ratio.

Some efforts, as summarized in Table 2, investigated the relationship between nighttime crash

risk and lighting photometric measures (e.g., illuminance, luminance, uniformity) or visibility

indicators (e.g., Small Target Visibility) rather than street lighting presence or improvement on
roadway segments and at intersections.
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Table 2.Summary of Previous Studies on Safety Performance
of Street Lighting Photometric Measurers

Roadway | Photometric Safety . .
sl Facility Measures Measure el ElE e
Box Freeway Horizontal Night-to- Freeways with horizontal illumination levels
(2971) illuminance | day crash of 0.3-0.6 fc had best night-to-day accident
rate ratio rate ratios.
Box Arterial Horizontal Crash Nighttime crash frequency increased by
(1976) illuminance | frequency 10% with decrease in horizontal illuminance
from 14 Ix to 9 Ix.
Janoff Urban Horizontal Crashrate | e Crash rate decreases with increase in
etal. roadway luminance visibility level.
(1978) segments ¢ Higher illumination levels related to
higher crash frequency.
Scott Roadway Horizontal Night-to- e Clear relationships between nighttime
(1980) segments luminance, day crash crash risk and measures of lighting
surrounding | ratio quality.
luminance, e Average horizontal luminance (L)
overall superior to surround luminance and
uniformity, horizontal/vertical illuminance to fit
horizontal crash data.
illuminance, e Inrange 0.5-2.0 cd/m? increase of 1
vertical cd/m? in luminance associated with 35%
Illuminance lower night-to-day crash ratio (%). Best-
fitting relationship is% = 0.66e7042L,
e Overall uniformity (max/min) and
homogeneity of luminance have no
proved relationship with nighttime crash
risk.
Mace Urbanand | Horizontal Night-to- e Less uniformity resulted in higher
(2997) suburban illuminance, | day crash night/day crash rates.
freeways, | luminance, |andcrash | e Influence of STV and light level on
arterials, small target | cost ratios night/day crash ratios confounded with
divided visibility glare.
roadways | (STV) e Data did not support conclusion that
increases in illumination are more likely
to reduce crashes than increases in
visibility.
Keck Urban and | Horizontal Night-to- o Evaluation of visibility of real roadway
(2001) suburban illuminance, | day crash objects needs include joint effects of both
freeways, luminance, ratio vehicle headlights and fixed street
arterials, small target lighting system.
divided visibility e No evidence to support correlation
roadways | (STV) between night-to-day crash ratio and

street lighting measures.
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Zhao
et al.
(2015)

Urban
arterial

Horizontal
illuminance,
Uniformity

Night-to-
day crash
rate
difference

Horizontal illuminance along corridor
complies with lognormal distribution.
Mean and standard variance of horizontal
illuminance proposed to replace
traditional measures for average lighting
level and uniformity.

Illuminance parameters significantly
related to difference between daytime and
nighttime crash rates.

Wang et al.
(2017)

Roadway
segment

Horizontal
illuminance,
Uniformity

Expected
night-to-
day ratio

Increase in mean horizontal illuminance
significantly decreases expected night-to-
day crash ratio.

Crash reduction factor for mean of
illuminance (x) estimated as
(x/baseline)™%%773 x 100%.

Good illuminance uniformity (max/min <
6) significantly reduces expected night-to-
day crash ratio by 2.3%.

Bhagavath-
ula et al.
(2015)

Rural
intersection

Horizontal
illuminance

Night-to-
day crash
ratio

Lighting level significantly impacts night-
to-day crash ratio at rural intersections.
Increase of 1 Ix in average horizontal
illuminance corresponded to 7% decrease
in night-to-day crash ratio.

For lighted intersections, night-to-day
ratio decrease is 9%; for unlighted
intersections, night-to-day ratio decrease
is 21%.

Edwards
(2015)

Rural
intersection

Horizontal
illuminance

Night-to-
day crash
ratio

1-lux (= 0.1 fc) increase in average
lighting (3.91 lux) reduced nighttime
crash rate by 9% in Minnesota.

At lighted intersections, a one-lux
increase in average lighting (6.41 lux)
reduced crashes by 20%.

At unlighted intersections, a one-lux
increase in average lighting (0.2 lux)
reduced nighttime crash ratios by 94%.

Wei et
al.(2016)

Urban
intersection

Horizontal
illuminance

Expected
night-to-
day crash
ratio

Increasing intersection illuminance from
low (< 0.2 fc) to medium (> 0.2 fc and
<1.1 fc) can reduce nighttime crash
frequency and night-to-day crash ratio by
approximately 50%.

Illuminance kept at 0.9 fc or higher, risk
of fatality and severe injury significantly
decreases, especially for
pedestrian/bicycle, head-on, and angle
crashes.

Bhagavath-
ula et al.
(2018)

Rural
intersection

Horizontal
illuminance

e Visual performance of driver plateaued

between 7 and 10 Ix of mean intersection
illuminance.
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Xuetal. Access Horizontal Speed e Improved illuminance can decrease speed
(2018) points illuminance | variance, variation among vehicles and improve
Crash rate safety levels.

¢ High-grade highways need better
illuminance at access points.

Yang et al. | Roadway Mean and Nighttime | e Horizontal illuminance characteristics
(2019) segment standard crash have a significant impact on nighttime
deviation of | frequency crash risk on roadway segments.
horizontal and daytime | « An increase in the mean of horizontal
illuminance | crash illuminance, indicating an improvement in
frequency average lighting level, tends to decrease

nighttime crash risk; an increase in the
standard deviation, representing a poor
uniformity of lighting pattern on a
roadway segment, is more likely to raise
nighttime crash risk.

e Because the two measures are strongly
correlated in a low mean range (<0.44 fc),
the two photometric measures need to be
considered together to interpret the safety
effects of lighting patterns.

e The standard deviation shows better
performance in measuring lighting
uniformity on a roadway segment than the
traditional ratios (max-to-min and mean-

to-min).

1.5 Research Objectives

The “big” lighting data produced from ALMS bring opportunities to regularly monitor roadway
lighting systems and deeply analyze lighting performance and challenges in data processing and
analysis. First, existing lighting analysis tools focus on roadway lighting design rather than
analysis of measured lighting data; there are no standard methods and computer tools to process
measured big lighting data for decision-making support. Second, many studies have explored the
connection between nighttime crash risk and lighting photometric measures; however, these
photometric studies used simple lighting measures statistics (e.g., mean of illuminance/
luminance and ratio-based uniformity) that cannot use the full information of lighting data and
capture the “true” lighting patterns that influence driver nighttime vision, consequently
contributing to nighttime crash risks (Wang et al., 2019). Traditional models are not appropriate
for analyzing big lighting data on disaggregate zones. Upgrading or maintaining lighting systems
on disaggregate zones with high nighttime risks can better identify nighttime risks related to
lighting patterns and more effectively allocate maintenance budgets. Thus, it is necessary to
develop innovative methods to diagnose lighting system performance based on high-resolution
lighting data and provide decision-making support in roadway lighting management and
maintenance.

The major goal of the proposed project was to develop innovative methods and tools that
automatically and intelligently diagnose roadway lighting performance based on big lighting data
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collected using the ALMS. The diagnosis results can provide decision-making support in
roadway lighting system maintenance and management to improve nighttime safety and security.
More specifically, the research objectives were as follows:

e Develop diagnosis algorithms that can effectively recognize lighting patterns and identify
zones with poor lighting performance (e.g., do not meet standards).

e Develop machine learning models to automatically extract features from lighting patterns
and precisely predict nighttime crash risk associated with given lighting patterns and
other factors.

e Develop a prototype of computer tools for automatically processing and analyzing
collected lighting data, including data mapping and pre-processing, intelligent diagnosis,
nighttime risk assessment, and data visualization. The expected technology readiness
level (TRL) is Level 7: Prototype demonstrated in operational environment.

e Implement the developed tools using Florida Department of Transportation (FDOT)
lighting measurement projects as case studies.
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Chapter 2:  Tool Development

2.1 System Architecture

The system architecture of the Automated Roadway Lighting Diagnosis System is shown in
Figure 5. The system consists of four modules:

e Data Mapping and Inventorying — Imports raw lighting data from the ALMS data logger
and map the data into ArcGIS layers. Besides the GIS coordinates, the roadway ID and
milepost are produced for each lighting data item using the Linear Reference function of
ArcGIS Pro. The mapped lighting data are stored in a geographic database.

e Lighting Pattern Recognition — Analyzes the lighting data for a roadway facility (i.e.,
segment or intersection) and identifies the sub-sections for which their lighting patterns
do not meet FDOT standards. The lighting pattern diagnosis uses a machine learning
algorithm developed in this study; details of the algorithm are provided in Chapter 3.

e Risk Prediction — Predicts the nighttime risk for a roadway facility with lighting data,
traffic data, geometric data, and historical crash data. The Safety Performance Functions
(SPF) and Empirical Bayesian (EB) model are used to predict the crash risk; their
descriptions are provided in Chapter 3.

e Data Visualization — Presents the results of pattern diagnosis and crash risk prediction.
Presentation methods include GIS maps, heat-maps, statistics, and figures.

—

GIS Database

Data Mapping and
Inventorying

Automated Roadway Lighting Diagnosis System

Pattern

Recognition GIS Map

> Data
Visualization

Statistics
Risk Prediction

A

Lighting Database

I

Geometric Data
Traffic Data
Historical Crash Data Formatted

ALMS Report

Figure 5. System Architecture of Automated Roadway Lighting Diagnosis System
2.2 System Development

The lighting diagnosis tools were designed to work on a web-GIS platform, as users can easily
access the tools with a modern web browser (i.e., Google Chrome, Firefox, MS Edge) using a

.............................................................................................................................................................................................................................. /Cz
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variety of devices (i.e., PC, Mac, tablets, mobile phones). The research team developed the tools
based on the ESRI solution with the University of South Florida (USF) academic license. The
tools and technologies for system development are summarized in Table 3.

Table 3. Summary of Environment & Technologies for Development

System Component

| Tool/Technology

Deployment — Server Side

Web Server MS 11S 8.5 on Windows Server 2012 R2
GIS Server ArcGIS Server 10.8
GIS Service Customized geoprocessing service

Execute Mode

Asynchronous

Deployment — Client Side

Device

Any device with an Internet connection

Software

Modern browsers

Development — Server Side

Development/Testing Platform ArcGIS Pro
Language Python
Library ArcPy, NumPy, Pandas

Development — Client Side

Development/Testing Platform

MS Visual Studio Code

Language

JavaScript

Library

ArcGIS API for JavaScript 4.15, Ulkit, Chart.js

2.3 System Functions

The system provides various functions to satisfy user needs in lighting data analysis. Users can
access the functions through a web-GIS interface hosted on a CUTR server at
http://its.cutr.usf.edu/lita. The major functions are summarized in Table 4.
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Table 4. Summary of Major Functions

Function | Subject | Description
User Interface
o Signal . . e
Display layer « Segment . D_|splay Sl_ijects with I_|ght|r_lg data on maps
o Filter subjects by location, time, or type
e Crash
Base-ma e Provide 24 base-maps
P e Flexible to switch base-maps
¢ Signal . . .
Selection « Segment o Speufy_subjects for analysis
e Crash ¢ Interactive selection on map
Clip « Segment . Speufy_a sub—sec_tlon of a segment for analysis
o Interactive selection on map
Split o Segment . Manual!y split a §egment into multiple sub-sections for analysis
e Interactive selection on map
o Automatically split a segment into multiple sub-sections for
. analysis
Segmentation e Segment « By uniformed length
e By the similarity of lighting patterns
Analysis
« Signal o Calculate photometric statistics for selected subjects
L_ighting . Seggment — Mean, Max/Min, Avg/Min
diagnosis e Crash — Customized buffer size
e Display histogram charts for photometric values
¢ Predict nighttime crash risk (frequency) for selected subjects
_ o « Signal e Using EB_ model _and_SPFs _
Risk prediction o Seament e Input variables: lighting data, AADT, geometry, traffic control,
g and historical crash frequency
o Display prediction results in table and figure
¢ Signal o Display heat-maps of photometric data for selected subjects on
Heat-map e Segment maps
e Crash ¢ Intuitive presentation of lighting patterns

2.4 Data Inventory

The system maps ALMS data into GIS layers, which can be joined with other data (Annual
Average Daily Traffic [AADT], geometry, crash, etc.) for analysis. All data are stored on the
ArcGIS server in GIS formats. The map and geoprocessing services retrieve the data via the
ArcPy library. Table 5 presents the data inventory used in the system.
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Table 5. Data Inventory in Automated Roadway Lighting Diagnosis System

Data Item | Format | Description
Lighting Data Layer
FC Float e Measured horizontal illuminance (foot-candle) at vehicle height
FC 6 Float e Converted horizontal illuminance at 6-in. above ground
Coordinates Float e GIS coordinates (X, Y)
e Unique number to identify a roadway segment in FDOT
Roadway 1D Integer Roacéway Characteristicsf}llnventory (yRCIg) database
Milepost Float e Number to measure distance to a reference point
Date/Time Integer e Data collection year, date, time
Segment Layer
Number of Lanes Integer e Number of through lanes
Area Type Indicator | ¢ Urban or not
Roadway Type Indicator | ¢ Divided or undivided
Access Points Integer e Number of intersections and driveways
AADT Integer o Average Annual Daily Traffic by year
T-Factor Float e Percentage of truck volume by year
Intersection Layer
AADT1 Integer o AADT on Street 1
AADT?2 Integer e AADT on Street 2
Intersection Type Indicator | ¢ Four-leg or three-leg
Crash Layer
Year Integer e Crash year (2017-2019)
Severity indicator | ® thal, incapacitating injury, non-incapacitating injury, possible
injury, PDO
Crash Type Indicator | ¢ Rear-end, angle, pedestrian, ...
Location Integer/Float | ¢ Roadway ID, milepost, coordinates

LARS (CTEDD Stay connected wilh CTFDD on T——

rlington TX 76019
0 ® O CEeENTER FOR TRANSPORTATION

CIEDDUIAEDU Eouity. Decisions & DoLLARS

q=




15

Chapter 3:  Model Development
3.1 Lighting Diagnosis Model
3.1.1 Problem Statement

In street lighting management, engineers usually diagnose a street lighting system by reviewing
photometric statistics on a roadway facility. If the photometric statistics cannot satisfy the DOT
standards, shown in Table 5, the lighting system may need to be maintained or upgraded. The
system provides the functions to calculate photometric statistics, such as mean of horizontal
illuminance, standard deviation of horizontal illuminance, max-min ratio, avg-min ratio, and
histogram, for a selected roadway facility. The functions work well for a small-size entity, such
as intersections or short roadway segments; however, they cannot account for the diversity of
lighting patterns on a long road segment.

Figure 6 is an example of illuminance distribution along a roadway segment, showing that the
lighting level of the left section is higher than that of the right section. The photometric statistics
of the whole segment cannot accurately describe the lighting pattern of segment. The mean of
illuminance (0.85 fc), max-min ratio (14.19), and avg-min ratio (8.54) are all higher than the
DOT lighting criteria (1.0 fc, 10, and 4, respectively). The statistics derive a conclusion that the
lighting level of the whole segment does not meet DOT standards. However, the lighting
statistics on the left section are 1.05 fc (mean), 3.48 (avg-min ratio), and 4.65 (max-min ratio),
indicating that the left section does meet DOT standards. Comparatively, the right section (mean
of 0.75 fc, max-min ratio of 14.19, and avg-min ratio of 7.52) does not meet the standards. In
practice, engineers would expect to identify the right section for lighting maintenance or upgrade
and exclude the left section.

Left Section Right Section

111111111

G 087 WesHiNe s 1909 9. 4408 9 ) QD 594 !
Qi o Goon 008 \a0I08RQ0N0 0V OO G [log o as b 0 T S st o a0

Figure 6. Example of Diverse Lighting Patterns along a Roadway Segment

The system provides functions of clip and segmentation. With these functions, users can
manually split the whole segment into sub-sections (such as left and right). An intelligent
diagnosis function that automatically identifies sub-sections that do not meet DOT standards is
expected to improve lighting diagnosis efficiency and accuracy.
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3.1.2 Automatic Segmentation Algorithm
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A machine learning model was developed to automatically split the whole roadway segment into
sub-sections. Each sub-section has similar photometric performance (either mean of illuminance
or ratio-based uniformity measure), but the photometric measures of neighboring sections are
different. The automatic segmentation model, as shown in Figure 7, adopts the hierarchical
clustering algorithm that iteratively combines two neighboring sections based on their similarity
of photometric measures. The details of important terms are interpreted as follows:

e Parameters — To provide flexibility for different situations, the algorithm has four
parameters. Users can specify parameters based on their needs and get an optimal
diagnosis result. The parameters are summarized in Table 6.

Table 6. Parameters for Automatic Segmentation Algorithm

Parameter

Description

Default VValue

Photometric
Measure

User specifies photometric measure to calculate similarity
(distance) between two neighboring sections. Measure
could be mean, standard deviation, max-min ratio, or avg-
min ratio.

n/a

Initial Length

Whole segment is split into small sections based on initial
section length; shorter initial length may recognize small
sections with different lighting patterns from neighboring
sections but may increase calculation time.

0.003 miles

Label Range

Label used to identify similarity in photometric measures
of neighboring sections. Two neighboring sections falling
into a category (label) are treated as similar sites and can be
merged into one section. More labels levels can increase
the resolution of lighting pattern diagnosis; however, more
label levels may result in fragmentation.

[0,05,1,15,2,
>2] for mean of
horizontal
illuminance

Minimum Length

Minimum length used as stopping criteria. Length of final
sections required to be greater or equal to minimum length.
Setting used to avoid issue of fragmentation.

0.135 miles

e Similarity — The absolute difference of photometric measures between two neighboring
sections is an indicator of the similarity of the sections. The “closest” section pair is
defined as two neighboring sections with the smallest difference of photometric

measures.

e Block — If two neighboring sections have different label levels and both satisfy the
minimum length, the two sections are indicated as an unsimilar pair (blocked). The
algorithm ignores “blocked” section pairs in iterations.

000
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Start

= Photometric measure (mean or v
uniformity)
= Initial section length == Parameter Input

= Label range
= Minimum section length

\ 4
= Split whole segment into small sections
with initial length . TR
. g. . «—---% Section Initialization
= Set all neighboring sections as
“unblocked”
= Calculate photometric measures for v
each section
= Calculate the difference of photometric ¥ ---34 Measure Calculation
measures for each neighboring section
pair
h J

Identify the “closest” section-pair that two
“unblocked” neighboring sections with the ¥ ——--3  Pair ldentification |«
most similar photometric measure values.

|

= If the two neighboring sections have the
same label, then merge

= If the two neighboring sections have €——=
different label and either of them cannot
satisfy the minimum length, then mege

Set the Pair as
“Blocked”

Satisfy Merge
Criterion?

= Combine the neighboring sections as
one section

= Recalculate photometric measure for
the combined section

=== Merge

= Each section length is greater than the

minimum length, and b Satisfy Stopping
= All neighboring sections has different Criterion?

labels
= Calculate photometric statistics for each

section
= Compare photometric statistics of each L

section with DOT standards F Output
= Qutput diagnosis results (meet or not)

for each section

\ J
End
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3.1.3 Example of Automatic Lighting Diagnosis Algorithm

An example is used to explain the automatic lighting diagnosis algorithm. Assuming that lighting
data are collected at a roadway segment of 0.5 miles, the parameter inputs include the following:

e Mean of illuminance is selected as photometric measure for analysis.

e |Initial section length is 0.1 miles.

e Labelrangeis 1-[0 fc, 0.5 fc), 2—-[0.5 fc, 1 fc), 3 —[1 fc, 1.5fc), 4 —[1.5 fc, ).
e Minimum length is 0.2 miles.

Based on the parameter inputs, the automatic lighting diagnosis procedure is as follows:

e [lteration 1 — The whole segment is splatted into five sections based on the initial length
(0.1 miles), and the mean of illuminance for each section is calculated. Based on the
calculated mean, a label is assigned to each section. For example, Section 1 is labeled as
3 because its mean of illuminance is 1.17 falling in [1 fc, 1.5 fc). Meanwhile, the distance
(the difference of illuminance mean) between two neighboring sections is calculated.
Section 2 and Section 3 are identified the “closest” pair, as they have the smallest
distance (0.1 fc). The pair satisfies the merging criteria: two neighboring sections have
the same label (2). Thus, the two sections are merged into a single section.

Section | Length (miles) Label Mean of llluminance (fc) Similarity”
1 0.1 3 1.17 -
2 0.1 2 0.86 0.31 >
3 0.1 2 0.76 0.10
4 0.1 1 0.32 0.44
5 0.1 2 0.54 0.22

* Mean of llluminance for Section; - Mean of Illuminance for Sectioni.

e lteration 2 — The mean of illuminance is recalculated for the new section (Section 2) that
combines Section 2 and Section 3 in Iteration 1. Section 2 is labeled as 2 because its
mean of illuminance is 0.81 fc. Meanwhile, the distance between any two neighboring
sections is recalculated. Section 3 and Section 4 are identified the “closest” pair, as they
have the smallest distance (0.22 fc). The “closest” pair satisfies the merging criteria: if
two neighboring sections have the different label (1 vs 2), but either of them is shorter
than the minimum length (0.2 miles). Thus, the two sections are merged into a single

section.
q . Mean of llluminance .
Section Length (miles) Label (o) Similarity
1 0.1 3 1.17 -
2 0.2 2 0.81 0.36
3 0.1 1 0.32 0.49
4 0.1 2 0.54 0.22 :

e [lteration 3 — The mean of illuminance is recalculated for the new section (Section 3) that
combines Section 3 and Section 4 in Iteration 2. Section 3 is labeled as 1 because its
mean of illuminance is 0.43 fc. Meanwhile, the distance between any two neighboring
sections is recalculated. Section 1 and Section 2 are identified the “closest” pair since
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they have the smallest distance (0.36 fc). The “closest” pair satisfies the merging criteria:
if two neighboring sections have the different label (3 vs 2), but either of them is shorter
than the minimum length (0.2 miles). Thus, the two sections are merged into a single

section.
] . Mean of llluminance .
Section Length (miles) Label (f) Similarity
1 0.1 3 1.17 - :
2 0.2 2 0.81 0.36
3 0.2 1 0.43 0.38

Iteration 4 — The mean of illuminance is re-calculated for the new section (Section 1) that
combines Section 1 and Section 2 in Iteration 3. Section 1 is labeled as 2 because its mean
of illuminance is 0.93 fc. Meanwhile, the distance between two neighboring sections is
recalculated. All neighboring sections have different labels, and each section reaches the

minimum length. Thus, the iteration stops.

Section Length (miles) Label Mean of Illuminance (fc) Similarity
1 0.3 2 0.93 -
2 0.2 1 0.43 0.56

The mean of illuminance for Section 1 is 0.93 fc, which is close to the DOT standard (1.0 fc).
However, the measure for Section 2 is 0.43 is much lower than the DOT standard (0.43 fc).
Thus, Section 2 should be put in the priority list for upgrading and maintaining.

3.2 Crash Risk Prediction Model for Roadway Corridor
3.2.1 Safety Performance Function

A Safety Performance Function (SPF) developed in a previous study (Yang et al., 2019a) was
used to evaluate the nighttime crash risk. The SPF adopts the Random Parameter Negative
Binominal technology to predict the nighttime crash frequency, given lighting photometric
measures (mean and standard deviation), traffic conditions (AADT and truck percentage),
roadway type (divided or not), area type (urban or rural), access density, and segment length.
The SPF equation is given below:

U= exp(—4.969 —0.42-M + 0.769-S + 0.526 - LN(AADT)
+0.236-HV +1.161-L + 0.036- ACCESS (1)
+ 0.456 - UNDIVIDED + 0.283 - URBAN)
where u — predicted nighttime crash frequency (per four years)

M — mean of horizontal illuminance (fc)

S — standard deviation of horizontal illuminance

LN (AADT) — natural logarithm of AADT

HV — heavy vehicle indicator (1 — if heavy vehicle percentage > 3%, 0 — otherwise)

L — segment length in miles
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ACCESS — access density (number of access points per mile)
UNDIVIDED — undivided road indicator (1 — if roadway is undivided, O — otherwise)

URBAN — urban road indicator (1 — segment is located inside urban limits but not inside
city limits, 0 — otherwise)

An Empirical Bayesian (EB) model is applied to provide more reliable inference for nighttime
crash risk at a given corridor. The EB model, which is a standard method define in the Highway
Safety Manual (HSM), combines the crash risk information from the SPF and from local
historical crash data. The EB model is described below:

1 )
1+ Ny XY +¢

Ne=wXxN,+(1—-w)XN,
w

where N, — expected nighttime crash frequency (per year)

N,, — predicted nighttime crash frequency (per year) by SPF, = £

4
N, — average historical crash frequency (per year)

w — weighting factor

N,, — predicted crash frequency (per year) for unit length (one mile), = %
Y — number of years for historical crash data collection

¢ — overdispersion parameter estimated in SPF development, = 3.604

The expected nighttime crash frequency (N,) represents the expected nighttime risk of a road
segment under prevailing lighting, traffic, and roadway conditions. In addition, the probability
(risk) of different nighttime crash number is calculated by:

P(N) = 3)

F(¢+N)< ¢ >¢< N, )”
I'(¢)-N \¢ +N, ¢+ N,
where P(N) — probability of N nighttime crashes occurring

I'() — Gamma function

3.2.2 Implementation of Crash Risk Prediction Model

The crash risk prediction model (SPF and EB model) was coded as an ArcGIS Geoprocessing
Tool (risk prediction module) in the system. The module retrieves crashes, lighting, traffic, and
geometry data from the system databases and display the prediction results on web. The flow
chart of crash risk prediction model is shown in Figure 8.
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Figure 8. Flow Chart for Crash Risk Prediction
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3.3 Crash Modification Factors for Street Lighting Photometric Measures
3.3.1 Problem Statement

Crash modification factors (CMFs) are a measure used to evaluate the safety performance of a
treatment in crash reduction. Usually, it is necessary to isolate the effect of a factor of interests
from other contributing factors. Lighting safety studies were based on cross-sectional
observation data, as it was difficult to collect lighting photometric data in street lighting
improvement projects for before-after studies. Street lighting photometrics, including street
lighting uniformity, are associated with many confounding factors; for example, transportation
agencies usually require high lighting levels on major roads that serve high traffic volume. Thus,
AADT is a typical confounder connecting both street lighting level and uniformity and nighttime
crash frequency. Observational cross-sectional studies without any control on confounding
factors may lead to counterintuitive conclusions such as high lighting level associated with high
nighttime crash frequency (Janoff et al., 1978; Wei et al., 2016) or no association between street
lighting level and nighttime crashes (Keck, 2001). Night-to-day crash ratios were widely used in
previous studies (Box, 1971; Keck, 2001; Scott, 1980; Wang et al., 2017; Zhao et al., 2015) to
exclude the unnecessary influence of factors that impact both nighttime and daytime crashes
(e.g., roadway maintenance quality, functional class, etc.) at the same sites. However, night-to-
day ratios cannot address confounders that connect nighttime crashes only. For instance, the
standard deviation of illuminance (a measurement of uniformity) tends to increase with a high
mean of illuminance in lighting data samples. Both variables significantly influence driver
detection ability at night and, consequently, contribute to nighttime crashes but not daytime
crashes. Night-to-day ratios cannot control the influence from the illuminance mean when
examining the safety effect of the standard deviation of illuminance, or vice versa.

The primary objective of this study was to investigate the safety effects of street lighting
uniformity on nighttime crash occurrence on roadway segments. A matched case-control method
was used to address the critical issues in cross-sectional street lighting data. CMFs of uniformity
were developed for roadway segments.

3.3.2 Matched Case-Control Study

A matched case-control study is commonly used in epidemiology to quantify the risk of disease
given certain characteristics related to an individual (Schlesselman, 1982). It has been used
recently in the highway safety field to investigate the risk of vehicle crashes given certain
characteristics related to a roadway entity (Abdel-Aty et al., 2004; Davis et al., 2006; Gross,
2013; Gross and Donnell, 2011; Gross and Jovanis, 2007). Unlike a cross-sectional study that
proceeds from cause to effect—although a matched case-control study is based on cross-
sectional data—this method adopts an opposite procedure (from effect to cause), attempting to
identify pre-condition factors contributing to the outcomes (crashes). The basic steps of a
matched case-control study are illustrated as follows:

e Step 1 — Defining: Roadway entities are split into two groups: 1) case — an entity
(roadway segment) that experienced at least one crash in a given period, and 2) control —
an entity (roadway segment) that did not experience a crash in the same period.
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e Step 2 — Matching: Multiple control entities are randomly matched to each case based on
the similarity of confounding factors correlated to both the risk factor of interest (e.g.,
lighting photometrics) and the outcome (e.g., nighttime crash). This matching scheme is
intended to eliminate the biased estimations on the association between the risk factor of
interest and the outcome through mitigating the disturbance from confounders
(Schlesselman, 1982). Since it often is impractical to match the exact value for
confounding variables, a category-matching scheme is usually implemented to stratify
each variable (stratification) and randomly pair cases and controls that fall into the same
cell created by the multiple cross-classification. The case-control ratio is constant by the
minimum ratio of controls to cases among all cross-classification categories.

e Step 3— Modeling: The conditional logistic regression model is estimated based on the
matched case-control pairs to address the relative risk of unmatched risk factors (lighting
photometrics and other geometric factors) rather than the probability of a crash in terms
of expected frequency (Gross et al., 2010).

The matched case-control method has some distinctive features that lead to being more valid to
infer causality than the cross-sectional study. First, this method adopts a comparison group
(controls) to support or refute an inference of a cause for any risk factor (Schlesselman, 1982).
Second, a case-control study is powerful for studying rare events since a pre-specified number of
cases (roadway entities experiencing nighttime crashes in a given period) enrolled in the study
can ensure an adequate sample size for analysis (Woodward, 2013). This feature is valuable for
addressing the issues of excess zero observations in the previous cross-sectional street lighting
safety studies. Third, a matched design in a matched case-control study can directly control for
confounding variables (including temporal instability) because each matched stratum has similar
values for each confounding variable (Schlesselman, 1982). Fourth, matched sampling in a
matched case-control study leads to a balanced number of cases and controls, which can reduce
the variance in the parameters of interest (horizontal curve design features) and improve
statistical efficiency in model estimation (Sahai and Khurshid, 1995).

A careful design is needed to avoid overmatching and residual confounding that may cause
biased inference and inefficiency of study. Overmatching may be caused by matching variables
associated only with or having equal status with either the risk factor of interest or the outcome;
consequently, the relationship between exposure and outcome will be obscured (Marsh et al.,
2002). In addition, the strong correlation between matching variables may also result in
overmatching (Schlesselman, 1982). If additional confounders are not controlled or stratification
of matching variables is too loose, residual confounding that the effects of confounding factors
could not be eliminated from the risk-outcome effect of interest may result in biased inference
(Psaty et al., 1999). However, if too many confounders are controlled by matching or
stratification of matching variables is too tight, the case-control ratio in each matching cell would
decrease dramatically and reduce the power of analysis (Woodward, 2013), even with
insufficient controls for matching. In practice, a trade-off analysis of the number of and the
stratification width for matching variables should be made based on statistical analysis and
professional knowledge to avoid residual confounding and/or insufficient controls.
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Leti (i =1,2,---,I) be an index to represent the matched case-control stratum. In each stratum,
J controls are randomly matched to one case based on the similar values of confounding
variables. Let j (j = 0,1, 2,--+,]) be an index to represent the observation record within each
stratum. Let k (k = 0,1,2,---, K) be an index to represent the unmatched explanatory
variablex;. The probability of a binary outcome associated with the unmatched explanatory
variables for jt" observation of the i*" stratum can be given as

- <ai + Z 5kxijk>n (4)
k=1

where Pr(y;; = 1) is the probability that the j** observation in the i*" stratum is a case; x;; is a
row vector for k unmatched explanatory variables x;; = (xijl, Xij2, Xij3) --~,xl-jk); X;ji is the
specific value of k" unmatched explanatory variable for j* observation in the it" stratum; a; is
the stratum-specific interpretation term reflecting the different combination effects of
confounding variables for different strata; and Sy, is estimated parameters for unmatched
explanatory variables.

Pr(yij = 1) = 1/{1 + exp

The conditional likelihood for each stratum i is based on the matched case-control design that the
case is the one with the row vector x;, and the controls are those with the other row vectors

x;j G = 1,2,--+,]) for k unmatched explanatory variables. Because each observation within the
stratum shares the same characteristics of the confounding variables, the effects of the
confounding variables on conditional probability cannot be estimated. The conditional likelihood
L(Y;|By) of the stratum i can be calculated as

J K
LGB = |1+ ) exp (Z BiCije = xm)) ©)
j=1

k=1

where x;o is the value of x,, for a case in the i stratum, and x;ji is the value of x; for the j¢"

matched control in the i*" stratum. Because the strata are assumed to be independent from each
other, the conditional log-likelihood function LL(Y|B)) over the population of | strata can be
written as (Schlesselman, 1982)

1 J K
LLYIB) == ) In|1+ ) exp (Z B xmk)) ©)
j k=1

i=1 j=1 =
Because the interpretation term «; in the above equation cannot be estimated, the absolute
probability of crash occurrence cannot be calculated in a matched case-control study.
Alternatively, the odds ratio is calculated to evaluate the relative effects of unmatched
explanatory variables on crash occurrence. For a dummy variable, the odds ratio represents the
odds that a motorcycle crash will occur given a roadway characteristic k (x;, = 1) compared to

/<
CISIONS AND DOLLARS (CTFDDY Sta 3 with CTFDD on: [

Sl y connected wilh C
man Dr #103. Arlington. TX 76019
0 @ O CEeENTER FOR TRANSPORTATION

17 272 5138 Eouity. Decisions & DoLLARs

CIEDDUIAEDU



25

the odds of crash occurring in the absence of that roadway characteristic (x;, = 0), holding other
variables constant. The odds ratio for a dummy variable can be written as

Pr(yio = 1lx, = 1,2) /[1 = Pr(y;o = 1|x, = 1,2)]

OR(x;) =
) Pr(yio = 1lx, = 0,Z)/[1 — Pr(y;o = 1|x) = 0,2)]

= exp(Bx) ()

where Z represents the vector of explanatory variables other than x,, and g, is the estimated
parameter for dummy variable x;. Based on this definition, the odds ratio can be used as the
direct estimation of the CMF.

3.3.3 Case and Control

In this study, 440 roadway corridors in urban and/or suburban areas with street lighting data were
identified based on the following criteria: (1) roadway sections between two successive
signalized intersections, (2) 600 ft or longer, (3) equipped with High Pressure Sodium (HPS)
light bulbs, and (4) no upgrade on street lighting in past several years. To exclude the influence
from adjacent signalized intersections, a 250-ft buffer was subtracted from the two ends of the
roadway corridors.

The 440 measured corridors were split into 2,440 segments with a uniform length of 1,200 ft.
Nighttime crash data for 2011-2014 was matched to each segment. Within the 2,444 segments, a
case was defined as a segment in which at least one nighttime crash occurred, and a control was
defined as a segment in which no nighttime crashes occurred. It is noted that segment length
should be carefully determined; a reasonable length cannot be too short or too long. In the former
case, the ratio of the number of cases to the number of controls would be too small, and zero-
inflated observations would be produced. Therefore, the analysis power would greatly decrease.
In the latter case, the variation of each risk factor within a segment would be large, whereas each
risk factor should be the same or similar within the segment; thus, the inference would be biased.
The segment length of 1,200 ft was used in this study to satisfy the above requirement.

A segment was allocated as a case or control for each year; thus, it could be a case for one year
and a control for another year. The detailed number of cases and controls in different years are
provided in Table 7. The measured street lighting points that fall into the same segment were
calculated for the illuminance mean, the illuminance standard deviation, and the illuminance
maximum-minimum ratio (max-min ratio) of the segment. The illuminance standard deviation
and the max-min ratio were used as two measurements of the illuminance uniformity of the
segment.

Table 7. Number of Cases and Controls by Year

Year Number of Cases Number of Controls Total
2011 279 332 611
2012 272 339 611
2013 301 310 611
2014 319 292 611
Total 1,171 1,273 2,444
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3.3.4 Confounder Matching

In this study, confounders were defined as variables associated with both the illuminance mean
and nighttime crashes. The confounders must be controlled so that the effects of illuminance
mean on nighttime crashes can be isolated and properly addressed. Several variables can be the
potential confounding variable of the illuminance mean, such as the illuminance standard
deviation, speed limit, number of lanes, AADT, and max-min ratio. To identify the real
confounding variables of the mean of illuminance, a Pearson’s correlation test was conducted.
The correlation matrix is shown in Figure 2.
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Figure 9. Explanatory Variable Correlation Matrix

It is noted that the illuminance mean is moderately and positively correlated with the illuminance
standard deviation, as indicated by a Pearson’s coefficient of 0.68. The reason is that the
illuminance standard deviation tends to be smaller when the illuminance mean is close to zero
given that the horizon illuminance is non-negative data. As the illuminance mean increases, the
distribution of the horizon illuminance gets wider and, thus, the illuminance standard deviation
becomes greater. In addition, the significant effects of the illuminance standard deviation on
nighttime crash risk were confirmed by conducting a negative binomial model. The results
showed that the illuminance standard deviation was positively associated with the number of
nighttime crashes, which is consistent with previous studies (Yang et al., 2019b; Zhao et al.,
2015). Therefore, the illuminance standard deviation was defined as a confounder of the
illuminance mean in this study.
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Further, the illuminance mean was weakly and positively correlated with the number of lanes and
AADT, as indicated by a Pearson’s coefficient of 0.33 and 0.34, respectively. Traffic agencies
usually install high-level lighting systems on high-grade roadways that consist of more traffic lanes
and bear higher traffic demand. It is noted that the number of lanes and AADT were strongly and
positively correlated with each other with a Pearson’s coefficient of 0.71, which implies that only
one of these two variables could be matched to avoid the overmatching issue. In this study, AADT
was chosen as another confounder in addition to the number of lanes so the confounding effects
could be properly eliminated and, thus, the residual confounding issue does not happen. The
significant effects of AADT on nighttime crash risk was also confirmed by conducting a negative
binomial model. The results showed that AADT was positively associated with the number of
nighttime crashes, which is consistent with previous studies (Yang et al., 2019b).

It is impractical to match the illuminance standard deviation and AADT by their exact values. Thus,
the two confounders were categorized into five levels using the following three steps:

1. Transform the original data to a normal distribution by calculating square root values.

2. Estimate the standard deviation after the above transformation.
3. Categorize the transformed data based on +/- a standard deviation from the mean, as
illustrated in Figure 10.
Category 1 Category 2 Category 3 Category 4 Category 5
| J ) | |
[ Vo |N |N| |N|
Mean

>

Minimum Standard 15 Standard Standard Maximum
Deviation Deviation Deviation
Transformed Data

Figure 10. Data Categorization

With these matching categories, controls were randomly matched to cases by a case-control ratio
of 1:1, which makes the power of design achieve approximately 90% (Woodward, 2013).
Matched categories and sample sizes for AADT and the illuminance standard deviation are
shown in Table 8.

After random matching, 1,046 cases and 1,046 controls were identified for modeling. The
descriptive statistics of unmatched risk factors for cases and controls are presented in Table 9.
The matched case-control method indicates the likelihood of a risk factor by assessing where this
factor is disproportionally distributed between the cases and control. As shown, only 11.6% of
cases (roadway segments that experienced at least one nighttime crash) had no access points, but
about 26.6% of controls (roadway segments that experienced no nighttime crashes) had no
access points. A conditional logistic model was estimated to investigate and quantify the risk
associated with one of these factors while holding others constant. The estimation results are
presented and discussed in the following section.
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Table 8. Matched Categories and Sample Sizes for
AADT and Illuminance Standard Deviation
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AADT
IHluminance Category 2 Category 3 Category 4
Standard C(""<t$95°gg)1 (7,569 (1,9321— (36,481 C(jgeggg%f Total
Deviation ’ 19,321) 36,481) 59,049) '
Case | Control | Case | Control | Case | Control | Case | Control | Case | Control
iagegg%’ ! 10 | 30 |3 | 73 |30 | 54 | 44| 40 4 0 324
%ag%g%/ 22 o | B 3 |55 8 |24 3 |13 10 |2 1| 232
(Coat;foo_%’ 318) 24 | 24 | 41| 35 |166| 218 |246 | 218 | 31 | 17 | 1020
g)agelchg/ 302) 44 | 45 | 104 | 97 | 117 | 165 | 146 | 102 3 1 824
gaéeggg 5 10| 26 | 5 3 0 0 0 0 0 0 44
Total 101 | 128 | 244 | 288 | 337 | 468 | 445 | 374 | 40 19 | 2,444

Table 9. Descriptive Statistics of Key Variables in Matched Case-Control Study

. . Case (n =1,046) | Control (n =1,046)
Variable Description Mean sD Mean )
Illuminance mean less than 0.5 fc indicator (1 if illuminance
mean less than 0.5 fc in this segment; 0 otherwise) 0.371 0.483 0.358 0.480
Illuminance mean 0.5-1.0 fc indicator (1 if illuminance mean
0.5-1.0 fc in this segment; 0 otherwise) 0.499 0.500 0.505 0-500
Illuminance mean greater than 1.0 indicator (1 if illuminance
mean greater than 1.0 fc in this segment; 0 otherwise) 0.130 0.337 0.138 0.345
No access point indicator (1 if segment has no access point; 0 0116 0.320 0.266 0.442
otherwise)
One or two access pomts mdl_cator (1 if segment has one or 0.487 0.500 0.486 0.500
two access point[s]; O otherwise)
Three or four a_lcce.ss points |_nd|cator (1 if segment has three or 0.288 0.453 0.187 0.390
four access points; 0 otherwise)
Five or more ac_ces§ points |n_d|cator (1 if segment has five or 0.110 0.313 0.061 0.240
more access points; 0 otherwise)
Max-min ratio no less than 10 indicator (1 if ratio of
maximum illuminance to minimum illuminance is greater than | 0.887 0.317 0.855 0.353
10 in this segment; 0 otherwise)
Daytime crash_ |nd|cator.(1 if segment experienced at least one 0.923 0267 0592 0.492
daytime crash; 0 otherwise)
Wider shoulder VYIdth |nd|cf31tor (1 if segment shoulder width 0.420 0.494 0520 0.500
greater than 16 ft; 0 otherwise)
ngh-de_nsn_y commgrual Iocatlop mdlce_ltor (aif sggment 0.239 0427 0245 0.430
located in high-density commercial area; 0 otherwise)
Year 2(_)12 indicator (1 if segment is observed in 2012; 0 0231 0422 0.270 0.444
otherwise)
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3.3.5 Model Estimation

The software package STATA 15 was used to estimate the conditional logistic model using the
matched case-control data. The max-min ratio was significant at a 90% confidence level; all
other explanatory variables are significant at a 95% confidence level, including illuminance
mean, number of access points, daytime crashes, shoulder width, land use type, and observed
year. The detailed estimation results and confidence interval (CI) of odds ratio are provided in
Table 10.

Table 10. Matched Case-Control Conditional Logistic Regression Model

Variable Coefficient| z | p-value | OR | 95% Cl of OR
Illuminance mean less than 0.5 fc indicator Baseline
Illuminance mean 0.5-1.0 fc indicator -0.387 -2.04 | 0.041 | 0.679 | [0.468, 0.984]
Illuminance mean greater than 1.0 indicator -0.543 -2.30 | 0.021 | 0.581 | [0.367, 0.922]
Max-min ratio no less than 10 indicator 0.330 1.81 | 0.070 | 1.391 |[1.031,1.876]"
No access point indicator Baseline
One or two access points indicator 0..042 3.15 | 0.002 | 1.043 | [1.016, 1.070]
Three or four access points indicator 1.009 533 | 0.000 | 2.744 | [1.893, 3.979]
Five or more access points indicator 1,382 5.17 | 0.000 | 3.983 | [2.360, 6.724]
Daytime crash indicator 2.053 12.70 | 0.000 | 7.794 [5.68, 10.7]
Wider shoulder width indicator -0.270 -2.03 | 0.042 | 0.763 | [0.587, 0.991]
High-density commercial location indicator -0.293 -2.05 | 0.040 | 0.746 | [0.565, 0.987]
Year 2012 indicator -0.285 -2.35 | 0.019 | 0.752 | [0.593, 0.954]

Model Statistics

Number of observations 2,092
Log-likelihood -531.446
Pseudo R? 0.267

* 90% Confidence Interval

The illuminance mean was aggregated into three levels: < 0.5 fc, 0.5 fc-1.0 fc and > 1.0 fc. As
shown in Table 9, when the illuminance mean is less than 0.5 fc, the percentage of cases is more
than the percentage of controls by 1.3% (37.1% for cases and 35.8% for controls), but when the
illuminance mean is 0.5-1.0 fc, the percentage of cases is less than the percentage of controls by
0.6% (49.9% for cases and 50.5% for controls). Similarly, when the illuminance mean is more
than 1.0 fc, the percentage of cases is less than the percentage of controls by 0.8% (13.0% for
cases and 13.8% for controls). This trend implies that nighttime crashes are less likely to be
observed on segment with relatively great illuminance mean values, i.e., no less than 0.5 fc.

The model estimation results presented in Table 10 confirmed this trend. The coefficients of all
the illuminance mean levels are significantly negative at a confidence level of 95% and become
smaller with an increase in the illuminance mean. This indicates that the increase in the
illuminance mean is more likely to decrease the relative risk of nighttime crashes on roadway
segments. This finding is consistent with previous studies (Jackett and Frith, 2013; Sullivan and
Flannagan, 2007) and the common sense that driver vision and sight distance considerably
improves as the illuminance mean increases, which contributes to a lower nighttime crash risk.
The odds ratio gives a significant (95% confidence level) and valid (95% confidence interval
excluding one) estimation on the CMF for the illuminance mean. If the illuminance mean on a
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roadway segment increases from < 0.5 fc to 0.5 fc—1.0 fc, the relative risk of nighttime crashes is
0.679 times as many as before. If the illuminance mean on a roadway segment increases from

< 0.5 fc to >1.0 fc, the relative risk of nighttime crashes is 0.581 times as many as before.
Compared with the previous study that developed joint CMFs for horizontal illuminance,
including both the illuminance mean and standard deviation (Yang et al., 2019b), the CMFs for
the illuminance mean was independently derived in this study by eliminating the effects of the
illuminance standard deviation during the matched case-control design. Therefore, the derived
CMFs can be used to better understand and assess the isolated effects of the illuminance mean on
nighttime crashes.

In addition to the illuminance standard deviation identified as a confounder and matched in this
study, the ratio of the maximum illuminance to the minimum illuminance also is an illuminance
uniformity measurement. The coefficient of a max-min ratio no less than 10 indicator is
significantly positive at a confidence level of 90%. If the max-min ratio of a segment is no less
than 10, the relative risk of nighttime crashes of this segment is 1.391 times as many as the
segments with the max-min ratio less than 10. This aligns with the standard suggested by the
Illuminating Engineering Society (IES) that the illuminance max-min ratio on the roadway must
not exceed 10 (IESNA, 1993).

3.4 Nighttime Crash Severity Diagnosis Model
3.4.1 Problem Statement

Most previous studies (see Table 2) focused on exploring the impacts of lighting patterns on
nighttime crash occurrence; few investigated the impacts of lighting patterns on injury severity,
which is another important risk measure of nighttime crashes. Wei et al. (2016) concluded that
an increase in intersection illuminance was an effective countermeasure to reduce the probability
of fatality and severe injury in a nighttime crash at a signalized intersection, especially for
pedestrian- or bicycle-involved, head-on, and angle crashes. For these crash types, intersection
illuminance kept at 0.9 fc or higher tends to reduce the probability of fatality, severe injury, and
non-severe injury by 10.7%, 9.0%, and 6.3%, respectively. If alcohol or drugs were involved,
these reductions were even larger. Xin et al. (2018) applied a random parameter ordered probit
model to describe the connection between the injury severity of a nighttime crash on a roadway
segment and the lighting level of a 1,000-ft zone in the upstream of a crash. They found that
increasing average horizontal illuminance from 0.4 fc or less to 0.4-0.8 fc can significantly
reduce the probability of injury severity in a nighttime crash by 4.05% (fatal or incapacitating
injury) and 6.62% (non-incapacitating injury or possible injury).

Illumination distribution along a roadway corridor presents an intricate pattern due to lighting
depreciation, obstacles (e.g., tree branches), and external lighting resources. Figure 11 shows an
example of street lighting patterns influencing nighttime driving safety. Along the car travel
route, the horizontal lighting level suddenly changes from 0.1 fc to 0.9 fc; the driver needs
several seconds to adapt to the new lighting condition, and, during this period, the driver’s vision
deteriorates. If an object presents in front of the car during this time, the driver may not be able
to avoid a collision, potentially resulting in a severe injury. The average illuminance used in
studies by Wei et al. (2016) and Xin et al. (2018) represented the overall lighting level of the
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segment and could not capture this local feature. Ratio-based uniformity measures (max/min and
average/min) maintain an extreme value (minimum or maximum) and may misinterpret a
dangerous pattern. Traditional photometric statistics are applicable in a grid analysis for a narrow
zone (single lighting pole design or isolated intersection), but they may not be appropriate for a
safety diagnosis for lighting patterns along a roadway corridor.

_____________________ cam
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Figure 11. Example of llluminance Patterns Influencing Driver Vision

This study aimed to develop a novel method to diagnose street lighting patterns that result in a
severe injury in a nighttime crash. A machine-learning algorithm was used to process the high-
resolution lighting data and increase prediction accuracy.

3.4.2 Data Preparation

Data for 2,862 nighttime crashes that occurred between 2012 and 2014 were collected from
roadway corridors with measured lighting data. For each crash, a rectangle buffer was created
towards the upstream direction of the crash in ArcGIS. The measured lighting data that fell into
the buffer were spatially matched to the associated crash. The buffer represents the range of
lighting patterns that influences crash injury. To capture the safety impacts of lighting patterns
more accurately, each buffer was divided into several sub-zones. The mean of matched lighting
data (horizontal illuminance) was calculated for each sub-zone to represent the lighting level of
the local zone. An example of the lighting buffer and sub-zones is shown in Figure 12.

In addition to lighting and crash data, geometric, traffic control, and environmental data were
also collected and matched to nighttime crashes. The collected data are described in Table 11.
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Figure 12. Lighting Buffers and Sub-zones Associated with Nighttime Crashes
Table 11. Description of Collected Data

Category Values
Crash severity 1 —severe injury (fatal or incapacitating injury), O — others
Lighting Average horizontal illuminance (fc) of sub-zones
Weather condition Clear, cloudy, rainy, fog, smog, or smoke
Speed limit (mph) 30, 35, 40, 45, 50, 55, 60
Drug-, alcohol-involved Drug-involved, alcohol-involved, drug-and-alcohol-involved
Junction event On roadway, off roadway

Not at intersection/railroad crossing/bridge, at intersection, influenced
by intersection, driveway access, railroad, bridge, on-ramp, off-ramp
Non-junction, intersection, intersection-related, driveway/alley access-
Related junction related, railway grade crossing, entrance/exit ramp, crossover-related,
shared-use path or trail, through roadway, narrative

No controls, school zone sign/device, traffic control signal, Stop sign,

Site location

Traffic device Yield sign, flashing signal, railroad crossing device, person (including
flagman, officer, guard, etc.), warning sign and narrative
Work zone Yes, no

Roadway surface condition | Dry, wet, mud, dirt or gravel roadway, water, narrative

Two-way not divided; two-way not divided with continuous left-turn
Vehicle driveway lane; two-way divided, unprotected median; two-way divided, positive
median barrier

1-10

Number of lanes
(bidirectional)
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3.4.3 Methodology

The Support Vector Machine (SVM) classifier was applied to predict injury severity based on
prevailing lighting patterns, roadway conditions, and environmental characteristics. Figure 13
illustrates the procedure for the prediction model development; the basic steps include data
processing, SVM model training, and SVM model testing. A grid search was conducted to find
the “best” model that reaches the highest prediction performance.

Matched Crash-Lighting Data

Y

Data Processing

v

/—> SVM Model Training

Parameter Grid Search ¢

ﬁ— SVM Model Testing

“Best” Model

Figure 13. Flow Chart of Technical Approach for Model Development

Data Preprocessing

Feature Selection — Model input features should be the factors that contribute to crash
injury severity. Crash-, person-, and vehicle-specific factors were excluded from the
feature selection. Although these variables have significant impacts on crash injury
severity, it is difficult to collect data for the model to diagnose lighting patterns, as some
features cannot be observed before crash occurrence (for example, impact point on
vehicles in a crash). To minimize the cost for implementing the model, only factors that
can be retrieved from roadway inventory databases are included in the model, such as
geometric data, traffic control devices, and environmental factors.

Encoding and Normalization — Feature variables can be divided into two categories:
categorical and continuous. Unlike some machine learning algorithms (e.g., decision
tree), SVM cannot directly learn from categorical data. A data transformation from
categorical data to a numerical format is conducted. Since no ordinal relationship exists
in categorical variables, one hot encoding is applied to categorical variables to provide a
new representation for machine learning tasks. In one hot encoding, each unique value in
a category is converted to a new binary variable, and a categorical variable with k
different unique values is converted to k binary variables. For continuous variables, all
variables are scaled in [0, 1] to prevent variables in different magnitudes from affecting
model performance. Assume x is a continuous variable, min (x) and max (x) are the
minimum and maximum values; the scaled value x' is given below:
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x —min (x) (8)
~ max (x) — min (x)

Support Vector Machine

SVM (Chang and Lin, 2011) is a highly-preferred machine learning algorithm that produces
significant accuracy with less computation. It defines a hyperplane to distinguish the data in a
d-dimensional space, where d is the number of variables. The hyperplane is found by
maximizing the margin for all classes to provide more classification confidence. For the binary
classification, given n observations:

(xl) }ﬁ); (xZ; yZ)) L] (xi; yi): Vi € {0' 1} (9)

where yi = 1 indicates a serve injury crash; yi = 0 indicates others; xi represents the input features.
The decision hyperplane is defined as:

fx)=wlx +b (10)

where w is the weight vector and b is the intercept. To solve the following optimization problem
SVM training becomes:

1 n
Min —wTw+Cz £.C>0
2 i=1

1)
Subjectto y;(wT@(x;)) + b) =1 —¢
where ¢ (x;) maps x; into a higher dimension space; ¢ is the error constraint and C is the
regularization parameter. By introducing a Lagrange multiplier, the optimization problem
becomes:
1
Min EaTaQ —eTa
(12)

Subjectto yTa = 0,0 < a; < C

where e is a vector of all ones; Q is an n x n matrix, Qij = y;y;K (x;,x;), K(x;, x;) is the Radial-
Basis Function (RBF) kernel, shown in Eq. 6.

K (x;, %) = exp (—y|x; — x;|%) (13)

where y is kernel parameter. After solving the optimization problem, the hyperplane is defined
as:
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fx)=wlx +b= zn yia;K(x;,x) + b (14)
i=1

This hyplane is the decision boundary of the model, which helps for label prediction.
Grid Search

A grid search is conducted to find the “best” SVM model that can most accurately predict the
injury severity of nighttime crashes based on input features. The search scope includes four
parameters, including buffer length (1), number of sub-zones (m), SVM kernel parameter (g), and
SVM regularization parameter (C). The first parameter (1) defines the influence area of lighting
patterns on a crash. The number of sub-zones describes lighting patterns more precisely within a
buffer. The grid search traverses the given ranges for the two variables and finds the best values.
The search range is given below:

e Buffer length — 0.1, 0.125, 0.15, 0.175, 0.2, 0.225 miles
e Number of sub-zones — 5, 10, 15

The buffer and sub-zones were produced for each crash by combining buffer lengths and zone
numbers. The lighting data and other features were matched to each generated buffer and
associated sub-zones. Finally, 18 crash-lighting datasets were generated.

SVM parameters g and C are model hyperparameters that may depend on the data but cannot be
estimated from the data. The grid search is used to find the optimal value of hyperparameter to
address the most accurate model. For each crash-lighting dataset, 80% of observations are
randomly selected to train the SVM model. The LIBSVM JAVA Library (Chang and Lin, 2011)
is used to perform model training. The grid search traverses different SVM parameters g and c in
the range of [219, 21°] to explore more space and find the hyperplane that provides better
discriminative classification.

To identify the well-trained model with different parameters, each model with the specified
parameter is validated using tenfold cross-validation to test the effectiveness of the model. Since
severe injury crashes are rare events, the crash-lighting datasets are unbalanced; non-severe
injury crashes (86% of the sample) occur more than severe ones (14%). The unbalance may
result in inaccurate prediction. To address this issue, the F1 score (Powers, 2011) combines both
the precision p and the recall r and better reflects the effectiveness of a model. Precision p is true
positive samples over the sum of true positive and false-positive samples. r is true positive
samples over the sum of true positive and false negative samples. The F1 score is a harmonic
average of the precision and recall, as shown below:

True positive

Precisi _
recision (p) True positive + False positive 15
True positive )

Recall (r) =
) True positive + False Negative
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Precision * Recall

F1 =2
score * Precision + Recall

After training, the SVM model is applied to the remaining 20% of observations to test the
prediction accuracy of the model with the highest validation results. To avoid randomness, each
crash-lighting dataset is trained 10 times, and the average testing accuracy on the trained model
is calculated as the model testing accuracy.

3.4.4 Results

Grid search results are presented in Table 12. Each row represents the best training result for the
18 combinations of buffer length and sub-zone number. The results indicate that the trained
SVM models had similar performance. The SVM model trained with a buffer of 0.125 miles and
10 sub-zones had the best performance.

Table 12. Grid Search Results

Dataset ID | Buffer Length (mi) | Number of Zones | Accuracy (%) | Sample Size
1 0.1 5 78.8 2,416
2 0.1 10 78.3 2,400
3 0.1 15 77.8 2,364
4 0.125 5 78 2,381
5 0.125 10 80.1 2,375
6 0.125 15 78.6 2,363
7 0.15 5 78.9 2,329
8 0.15 10 78.8 2,326
9 0.15 15 79.1 2,315
10 0.175 5 78.2 2,297
11 0.175 10 79 2,292
12 0.175 15 78.1 2,281
13 0.2 5 77.7 2,242
14 0.2 10 78.1 2,241
15 0.2 15 78.6 2,235
16 0.225 5 78.9 2,206
17 0.225 10 77.9 2,194
18 0.225 15 78.1966 2,191

An example of a lighting pattern diagnosis is provided in Table 13. The best model predicted the
injury severity of the two crashes. For the possible injury crash, the predicted probability of label
“1” is 5.6%; the predicted probability for the fatal crash is 73.3%. This example shows that the
SVM model effectively classified the crash severity level based on lighting patterns and other
features. By checking the photometric statistics for the two crashes, it was found that the possible
injury crash experienced a higher lighting level (1.298 fc) and much better uniformity (11.4 for
avg/min and 19.5 for max/min) compared to the fatal crash. Figure 12(a) shows that the possible
injury crash with the lighting level along the buffer was kept at a high level. Five zones (50%)
were higher than 1.0 fc, and four fells in the range of 0.75-1.0fc. Only one zone was lower than
0.7 fc. In contrast, Figure 12(b) represents the lighting pattern of the fatal crash and expresses a
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diverse lighting distribution; three sub-zones had a lighting level of 0.5 fc or less, and, most
importantly, a very low-lit zone (< 0.5fc) directly connected to a high-lit zone (> 1.0fc). The
contrast illumination pattern causes high risk for drivers. The SVM model captured the traits of
the two lighting patterns.

Table 13. Comparison of Lighting Pattern Diagnosis for Two Crashes
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Category Item Crash | Crash Il
Crash Features Figure . Flgyre 12(a) Figure 12(b)

True severity Possible Injury Fatal
Buffer length 0.125 mi

SVM Model Number of sub-zones 10
Predicted probability of label “1” 5.6% 73.3%
Final label 0 — Non-severe Injury | 1 - Severe Injury

- Average horizontal illuminance (fc) 1.298 0.705

Statistics for -

whole buffer Averagg/Mln 114 43.5
Max/Min 19.5 134.5

The developed SVM model effectively captured the traits of lighting patterns that are complexly
distributed over space. Even without knowing factors during and after a crash, the developed
SVM model effectively predicted the crash injury severity based on lighting patterns. SVM
model inputs include lighting patterns and other data that can be quickly retrieved from roadway
inventory databases. The model is easy to implement for scanning the lighting patterns of a
roadway corridor and identifying zones with high injury risk if a crash occurs.

The grid search defined the best lighting pattern diagnosis settings: 0.125 miles of buffer length
and 10 sub-zones within one buffer. However, this study did not consider the lateral range of
lighting patterns. In addition, only the mean of horizontal illuminance for each sub-zone was
used to describe the lighting patterns. The simple measure may lose lighting information; more
informative lighting measures, such as a histogram, and configurable buffer width will be
considered in a future study.
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Chapter 4:

Case Studies

The developed tools were applied on selected corridors to demonstrate and validate the tool’s
operation and performance. Corridors were selected from CUTR’s lighting data inventory,

including additional lighting data collected for FDOT District 7 and Johnson, Mirmiran &
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Thompson (JMT) in 2020. The diagnosis results were provided to FDOT and JMT for supporting
their decisions related to street lighting management.

4.1
W Busch Boulevard

Lighting Diagnosis and Proposed Lighting Improvement Evaluation on

W Busch Boulevard in Tampa is a principle arterial in an urban area. Characteristics of Busch

Boulevard are shown in Table 14.

Table 14. Busch Boulevard Characteristics

Item Description
Functional Classification Principal Arterial
Area type Urban
Boundary Dale Mabry Hwy — Florida Ave
Roadway ID in database 10310000
BMP — EMP 0.087 — 2.847
Length 2.76 mi
Number of through lanes 4 (bidirectional)
Speed limit 45 mph
AADT 42,500
Lighting technology HPS
DOT lighting standards Mean > 1.5 fc, max/min > 10, avg/min > 4

The CUTR team collected lighting data (horizontal illuminance) on this segment using the
ALMS. The illuminance points were read every 10 ft per lane along the corridor, and data for

12,286 illuminance points were collected. The photometric statistics in Table 15 clearly indicate
that the lighting patterns do not satisfy FDOT standards in either mean and uniformity.

Table 15. Photometric Statistics for Whole Segment
on W Busch Boulevard

Item Description
Average llluminance 0.72 fc (< 1.5 fc)
Avg/Min 198.77 (>>4)
Max/Min 391.78 (>>10)

A heatmap was produced based on the measured illuminance data, as shown in Figure 14, and
indicates that the lighting pattern is unbalanced along the segment. The lighting level on the right
side is significantly higher than that on left side; thus, statistics for the whole segment may not be
reasonable to describe the lighting condition along the corridor.
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Figure 14. Heatmap for W Busch Boulevard

The Automatic Lighting Diagnosis Module was applied to split the segment into sub-sections
based on similarity of average lighting level. The default values of the parameters (Table 6) were
used to conduct the diagnosis; the diagnosis results are shown in Figure 15.

The diagnosis module recognized the diversity of lighting patterns and split the whole segment
into four sections. Zone 1 represented the “worst” portion on W Busch Boulevard; the average
lighting level in Zone 1 was 0.25 fc, significantly lower than the FDOT standard (1.5 fc for
major arterials). The section also had “poor” uniformity: max-min ratio (391.8) and avg-min
ratio (70.6) were much higher than FDOT standards (10 and 4, respectively). Zone 2 was
brighter than Zone 1; its average lighting level is 0.73 fc, still lower than the standard. The
uniformity measures were 30.4 (max/min) and 15.6 (avg/min). The lighting pattern in Zone 4
was slightly better than Zone 2, with a mean of 0.84 fc, max/min of 12.7, and avg/min of 7.5.
However, the two zones still did not satisfy FDOT standards. Zone 3 had the “best” lighting
performance; the average lighting level was 1.04 fc, lower than FDOT standards. However, the
uniformity satisfied FDOT standards in either max/min (5.2 < 10) or avg/min (3.8 < 4). The
Automatic Lighting Diagnosis System produced histograms of horizontal illuminance for each
zone, which show that 65% of the area in Zone 1 was lower than 0.25 fc; 40% of the area in
Zone 3 was 1.0-1.5 fc, and Zone 2 and Zone 4 had a relatively uniform distribution of lighting
level over categories.

The crash risk prediction module was applied to analyze the nighttime crash risk for each
section. Zone 3, which had the best lighting performance, was expected to have the lowest
nighttime crash frequency (4.3 crashes per year per mile) in the target year (2020). Zone 1 and
Zone 2 had similar safety performance (expected nighttime crash frequency in 2020)—11
crashes per year per mile and 10 crashes per year per mile, respectively. Zone 4 had the “worst”
safety performance; it was expected to have 14.8 crashes per year per mile in 2020.

In summary, the lighting patterns on W Busch Boulevard (Dale Mabry Highway to N Florida
Avenue) did not meet FDOT standards; most of the segment had a high nighttime crash risk
(> 10 crashes per year per mile).

IONS AND DOLLARS (CTFDIDY Stay connected with CTFDD on: [

rman Dr #103. Arlington TX 76010
0 ® O CEeENTER FOR TRANSPORTATION

CIEDDUIAEDU Eouity. Decisions & DoLLARS

“GED




40

|1 ALY 3 3! sl lE 8 3" F s
Sta Histogram S ¥ 3 w
= ® W12 <
b | 75% = % W1271h'Ave P
Histogram b
50% 50%
nc
25%
L 25%
0% e e e A
<025 ~05 ~075 ~10 ~125 ~15 ~175 ~20 =20 "
Foot-candle Category 0%
v 7 <025 ~05 ~075 ~10 ~125 ~15 ~175 ~20 =20
Ln
Zone: 1 Foot-candle Category
lwood =
= BMP-EMP: 0.087 - 0.507 smaes ZONE: 3
Carroll Gro Dr
Carroll P|
= Mean: 0.25 fc e ™ BMP-EMP: 1.788 — 1.998 : W 109th Ave
4 <f A F:,':,‘“
. Park
= Avg/Min: 70.6 v = Mean: 1.04 fc W Sefecd A
P oz EastForest >
i L e Hills :
* Max/Min: 391.8 » Avg/Min: 3.8 B ey 2
F AU actflle 3 : =
T 2 { Lak i i Sepow  Elementary é} B4
50 o ., m  Max/Min: 5.2 2\
i | <
z ot % 2 O  NHabana PI > jY-LinebaugAve:% 3
& Lake o S Ohapel Way Z WTom i 9 g
(= Yard . ¥ Barclay Rd 3 WP &t O =
) Vhitting o n Pl = Z L 7
b Habana Park = ; Sahara Wind Dr - ;2
DTN Pero and Histori £
- :T;’»‘:u Forest 2
a0q Parky W Se 'S Hills, Chambsriain jf
_White Swan D~ Cale Ln WY s % High 2,
W Hamille r Ave

(S ™ BTy ¢ & ol w h‘!’ﬂf’ a
: _ I ° 7 Tl e ew et g
=

i 3 Twin Lake W Skagway Ave
< = @ R
= 3 Center
z B £ @

«  Zone: 2 2 g
I & W Arctic St = o
7 B ; ! n 1 Z :x < 2
. = BMP-EMP: 0.506 - 1.788 i SINE,
& Zone: 4 g2
' wae m Mean: 0.73 fc W Waters Ave (584 =(3)
g 5 = BMP-EMP: 1.998 —2.850 |.
= e H Y E
3 “ = Avg/Min: 15.6 ) Low 2
3 < 5 ‘= Mean: 0.84 fc =
Laz . % W Sitl e
soy =  Max/Min: 30.4 T P
=== T <= Avg/Min: 7.5
clal Cir 7 > ) i i P
Histogram g A =
- ! e 5= Max/Min: 12.7 Terrace
E | Histogram H
25% < 50% E Clint
bnAve =
| P ; KCluster
0% 1 25%
<025 ~05 ~075 ~10 ~125 ~15 ~175 ~20 >20 [kt
1] Foot-candle Category st
= WhMineraa s & ; <025 ~05 ~075 ~10 ~125 ~15 ~175 ~20 >20
2 Alene St Foot-candle Category
% W Lambright St
2 e O W e W.Diana St
1 Lake @ L e W North St o

Figure 15. Automatic Lighting Diagnosis on W Busch Boulevard
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Upgrading the street lighting system is a potential countermeasure to improve nighttime safety
on W Busch Boulevard. The CMFs developed in this study were used to estimate nighttime crash
reduction due to the lighting system upgrade. Assuming a lighting upgrading project is proposed

to increase the lighting patterns to FDOT standards, the estimated nighttime crash reduction is

given in Table 16.

Table 16. Estimation of Nighttime Crash Reduction with Proposed Lighting Improvement

Zone 1 Zone 2 Zone 3 Zone 4
Mean of Existing 0.25 fc 0.73 fc 1.04 fc 0.84 fc
Illuminance Proposed 1.5 fc 1.5fc 1.5fc 1.5 fc
CMFy 0.581 0.856 1 0.856
Existing 391.8 30.4 5.2 12.7
Max/Min Proposed 10 10 10 10
CMFy 0.718 0.718 1 0.718
Expected Nighttime Crash Frequency (per yr) 4.6 12.8 0.9 12.6
CMFy X CMFy 0.417 0.615 1 0.615
Crash Reduction Factor 0.583 0.385 0 0.385
Estimated Crash Reduction (per yr) 2.7 4.9 0.0 4.9
Total Crash Reduction 12.5 crashes per year

4.2 Validation of LED Street Lighting Upgrade

E 7' Avenue from Nuccio Parkway to 24" Street in Tampa is a historic community with many
bars, clubs, and recreational stores. The street experienced significant pedestrian crashes and
injuries, especially at night. The City of Tampa upgraded the street lighting technology from
HPS to LED in 2015. The CUTR team help the City measure the lighting patterns on 7" Avenue
in 2014 (before upgrading), 2015 (after upgrading), and 2019 (the second measure after
upgrading) through a contract with FDOT District 7. This study diagnosed and compared
lighting patterns collected in three stages to verify LED lighting patterns. The basic information
of E. 7" Avenue is shown in Table 17.

Table 17. E 7th Avenue Characteristics

Item Description
Functional Classification Major Collector with frequent pedestrian traffic
Area type Urban
Length One mile
Number of through lanes 2 (bidirectional)
Speed limit 30 mph
AADT 5,600
Lighting technology HPS (before 2015), LED (since 2015)
DOT lighting standards Mean > 1.0 fc, max/min > 10, avg/min > 4

The system produced heatmaps for the three lighting measures, as shown in Figure 17. The
comparison shows the following findings:

e The mean of horizontal illuminance satisfied FDOT standards in the three stages. The
mean of horizontal illuminance decreased after LED upgrading (1.71 fc to 1.3 fc).

EDD
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e The uniformity improvement was very significant (avg/min from 106.9 to 9.7 and 8.8,
max/min from 143 to 10.5 and 9.4). Based on the max-min ratio, the uniformity satisfied
FDOT standards after LED upgrading.

e According to the CMFs developed in this study (Table 10), improved uniformity can
reduce nighttime crash frequency by 28%, and reduction of illuminance mean has no
significant influence on safety performance.

o Depreciation of LED lighting performance was slight, as the lighting patterns in 2015 and
2019 are similar.
2014, HPS, E 7th Ave :

B

Max 2.289
Min 0.016
Avg 1.710
Avg/Min 106.875
Max/Min 143.063
Max 1.410
Min 0.134
Avg 1.306
Avg/Min 9.746
Max/Min 10.522
Max 1.410
Min 0.150
Avg 1.316
Avg/Min 8.773
Max/Min 9.400

Figure 17. Comparison of Lighting Patterns on E 71" Avenue, Tampa
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Chapter 5.  Summary and Conclusions

5.1 Summary and Conclusions

Roadway lighting is a conventional roadway infrastructure to ensure nighttime safety and
security for multimodal road users (motorists, pedestrians, cyclists, transit passengers). To cost-
effectively maintain a roadway lighting system, key tasks in infrastructure management include
periodically measuring roadway lighting levels, diagnosing lighting performance based on
collected data, and providing decision-making support for maintenance and improvement.

The ALMS developed by CUTR provides a low-cost and time-effective solution for collecting
high-resolution lighting data for a big-scale roadway network. CUTR contracted with FDOT and
JMT to measure lighting data; since 2012, 400 center-mile measurements have been completed
using the ALMS. This lighting measurement is expanding to other districts.

This project developed a computer tool to effectively analyze big-scale lighting data. The tool
provides three core functions — lighting pattern diagnosis, crash risk prediction, and data
visualization. A summary of the functions is given in Table 18. The tool was developed on an
ArcGIS web platform, and the analysis functions were coded as ArcGIS geoprocessing tools that
can be accessed by desktop and web applications. A web-GIS application provides interactive
interface to receive user command and present analysis results.

Table 18. Summary of Core Functions

Function Algorithm/Technology Description
Lighting Pattern . . . Distinguish lighting patterns that do not
Diagnosis Hierarchical Clustering Model satisfy FDOT standards
o Safety Performance Function y Rred!ct nlghtt_lme crash frequency by
. 7. . lighting, traffic, and geometry
Crash Risk e Empirical Bayesian Model "
Prediction e CMF developed by Case-Control conditions .
Stud e Estimate nighttime crash reduction due

y to lighting pattern improvement
Dgta o Web-GIS Present analysis results on GIS map
Visualization

The developed tool was implemented on the segments studied by CUTR for FDOT and JMT in
2019. Two case studies are presented in this report to demonstrate the performance of tool in
lighting management and evaluation projects. The tool successfully diagnosed the lighting
pattern on W. Busch Boulevard in Tampa, predicted nighttime crash risk with existing lighting
conditions, and estimated the benefit (crash reduction) of a proposed lighting improvement
project. The tool was also used to compare the lighting patterns of E. 7" Avenue in Tampa over
three years to validate the LED upgrading project, which showed that the tool reached
Technology Readiness Level 7: Prototype Demonstrated in Operational Environment.
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5.2 Implementation

The CUTR team will implement the tools and methods developed in this project in new lighting
measurement and analysis tasks funded by FDOT and JMT. To implement the tool, CUTR wiill
complete the following steps:

e Debugging — As a prototype, it is normal for errors and bugs to exist. The research team
will continue to test the system to identify and fix bugs in the current version. A stable
version is expected to be implemented in a production environment.

e Standard Operation Procedure — The research team will develop a Standard Operating
Procedure (SOP) to guide the implementation step by step. The SOP will include
importing raw data from the ALMS, converting them to a standard data format,
conducting analysis based on needs, and producing formatted reports. Operators will be
trained according to the SOP to provide a high-quality services in data collection,
processing, and analysis.

e Implementation — The CUTR team will apply the SOP and tools in the lighting data
collection tasks. Analysis results will be provided to FDOT/IJMT for their decision-
making in street lighting management. Experiences from the implementation will be used
to update the system.

5.3 Future Study

Although the prototype successfully demonstrated its functions in lighting pattern analysis, there
are some limitations requiring further study:

e The current lighting diagnosis algorithm considers only one measure (mean or
uniformity) in calculating similarities. A study is needed to develop a new lighting
diagnosis algorithm that recognize lighting patterns by mean and uniformity
simultaneously to provide a more reasonable pattern recognition method.

e Crash risk prediction in the current version is based on nighttime crash frequency.
Although the injury severity model was developed in this study, it was not integrated in
the computer tool due to data availability in practice. A future study will develop a new
crash risk index to combine the information of frequency and severity. The new crash
risk prediction can provide a more reasonable measure for scaling the safety performance
of street lighting patterns.

e The current computer tool can be used for single segment analysis; however, a decision-
making support system is needed to analyze the lighting patterns for a large-scale area (i.e.,
city, county, or district). A future study would develop analysis functions at the planning
level, including identifying segments with high nighttime crash risk, diagnosing lighting
patterns (if lighting is a major cause), estimating benefits/cost for proposed lighting
improvement projects, and ranking the proposed project based on benefit-cost ratios.
FDOT managers can select top improvement projects from a ranking list to optimize street
lighting management and maintenance.
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